論文の概要: Underwater Image Enhancement using Generative Adversarial Networks: A Survey
- arxiv url: http://arxiv.org/abs/2501.06273v1
- Date: Fri, 10 Jan 2025 06:41:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:34.829268
- Title: Underwater Image Enhancement using Generative Adversarial Networks: A Survey
- Title(参考訳): ジェネレーティブ・ディバイサル・ネットワークを用いた水中画像の強調:調査
- Authors: Kancharagunta Kishan Babu, Ashreen Tabassum, Bommakanti Navaneeth, Tenneti Jahnavi, Yenka Akshaya,
- Abstract要約: ジェネレーティブ・Adversarial Networks (GAN) は水中写真を強化する強力なツールとして登場した。
GANは、海洋生物学や生態系モニタリング、サンゴ礁の健康評価、水中考古学、自律型水中車両(AUV)ナビゲーションなど、現実世界の応用に応用されている。
本稿では,物理・物理フリーモデルからCNNベースモデル,最先端のGANベース手法に至るまで,水中画像強調への主要なアプローチについて検討する。
- 参考スコア(独自算出の注目度): 1.2582887633807602
- License:
- Abstract: In recent years, there has been a surge of research focused on underwater image enhancement using Generative Adversarial Networks (GANs), driven by the need to overcome the challenges posed by underwater environments. Issues such as light attenuation, scattering, and color distortion severely degrade the quality of underwater images, limiting their use in critical applications. Generative Adversarial Networks (GANs) have emerged as a powerful tool for enhancing underwater photos due to their ability to learn complex transformations and generate realistic outputs. These advancements have been applied to real-world applications, including marine biology and ecosystem monitoring, coral reef health assessment, underwater archaeology, and autonomous underwater vehicle (AUV) navigation. This paper explores all major approaches to underwater image enhancement, from physical and physics-free models to Convolutional Neural Network (CNN)-based models and state-of-the-art GAN-based methods. It provides a comprehensive analysis of these methods, evaluation metrics, datasets, and loss functions, offering a holistic view of the field. Furthermore, the paper delves into the limitations and challenges faced by current methods, such as generalization issues, high computational demands, and dataset biases, while suggesting potential directions for future research.
- Abstract(参考訳): 近年、水中環境がもたらす課題を克服する必要性から、GAN(Generative Adversarial Networks)を用いた水中画像の強化に焦点を当てた研究が急増している。
光減衰、散乱、色歪みなどの問題は水中画像の品質を著しく低下させ、重要な用途での使用を制限する。
GAN(Generative Adversarial Networks)は、複雑な変換を学習し、現実的な出力を生成する能力により、水中写真を強化する強力なツールとして登場した。
これらの進歩は、海洋生物学や生態系モニタリング、サンゴ礁の健康評価、水中考古学、自律型水中車両(AUV)ナビゲーションなど、現実世界の応用に応用されている。
本稿では,物理・物理のないモデルから畳み込みニューラルネットワーク(CNN)ベースのモデル,最先端のGANベースの手法に至るまで,水中画像強調への主要なアプローチについて検討する。
これらの手法、評価指標、データセット、損失関数の包括的な分析を提供し、この分野の全体像を提供する。
さらに,本論文では,一般化問題や高い計算要求,データセットバイアスなど,現在の手法が直面する限界や課題について考察し,今後の研究の方向性を示唆する。
関連論文リスト
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
この研究は、提案されたアプローチの有効性をさらに説明するために、現実世界の水中データセットに関する広範な実験を行っている。
海洋探査、水中ロボティクス、自律水中車両といったリアルタイムの水中アプリケーションでは、ディープラーニングと従来の画像処理技術を組み合わせることで、計算効率の良いフレームワークと優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-18T08:40:26Z) - UW-SDF: Exploiting Hybrid Geometric Priors for Neural SDF Reconstruction from Underwater Multi-view Monocular Images [63.32490897641344]
ニューラルSDFに基づく多視点水中画像から対象物を再構成するフレームワークを提案する。
再建過程を最適化するためのハイブリッドな幾何学的先行手法を導入し、神経SDF再建の質と効率を著しく向上させる。
論文 参考訳(メタデータ) (2024-10-10T16:33:56Z) - Physics-Inspired Synthesized Underwater Image Dataset [9.117162374919715]
PHISWIDは、物理にインスパイアされた画像合成による水中画像処理の強化に適したデータセットである。
我々のデータセットは水中画像処理の発展に寄与する。
論文 参考訳(メタデータ) (2024-04-05T10:23:10Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Learning Heavily-Degraded Prior for Underwater Object Detection [59.5084433933765]
本稿では、検出器フレンドリーな画像から、転送可能な事前知識を求める。
これは、検出器フレンドリー(DFUI)と水中画像の高度に劣化した領域が、特徴分布のギャップがあることを統計的に観察したものである。
高速かつパラメータの少ない本手法は変圧器型検出器よりも優れた性能を保っている。
論文 参考訳(メタデータ) (2023-08-24T12:32:46Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - A Novel Underwater Image Enhancement and Improved Underwater Biological
Detection Pipeline [8.326477369707122]
本稿では, YOLOv5 バックボーンに畳み込みブロックアテンションモジュール (CBAM) を付加した特徴情報を取得する手法を提案する。
物体特性に対する水中生物特性の干渉が減少し、対象情報に対するバックボーンネットワークの出力が向上する。
論文 参考訳(メタデータ) (2022-05-20T14:18:17Z) - Underwater Image Restoration via Contrastive Learning and a Real-world
Dataset [59.35766392100753]
本稿では,教師なし画像から画像への翻訳フレームワークに基づく水中画像復元手法を提案する。
提案手法は, 生画像と復元画像の相互情報を最大化するために, コントラスト学習と生成敵ネットワークを利用した。
論文 参考訳(メタデータ) (2021-06-20T16:06:26Z) - Domain Adaptive Adversarial Learning Based on Physics Model Feedback for
Underwater Image Enhancement [10.143025577499039]
物理モデルに基づくフィードバック制御と,水中画像の高機能化のための領域適応機構を用いた,新しい頑健な対角学習フレームワークを提案する。
水中画像形成モデルを用いてRGB-Dデータから水中訓練データセットをシミュレーションする新しい手法を提案する。
合成および実水中画像の最終的な改良結果は,提案手法の優位性を示している。
論文 参考訳(メタデータ) (2020-02-20T07:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。