Constrained 6-DoF Grasp Generation on Complex Shapes for Improved Dual-Arm Manipulation
- URL: http://arxiv.org/abs/2404.04643v2
- Date: Mon, 15 Jul 2024 15:45:57 GMT
- Title: Constrained 6-DoF Grasp Generation on Complex Shapes for Improved Dual-Arm Manipulation
- Authors: Gaurav Singh, Sanket Kalwar, Md Faizal Karim, Bipasha Sen, Nagamanikandan Govindan, Srinath Sridhar, K Madhava Krishna,
- Abstract summary: We propose CGDF: Constrained Grasp Diffusion Fields, a diffusion-based grasp generative model that generalizes to objects with arbitrary geometries.
We show that our method can generalize to generate stable grasps on complex objects, especially useful for dual-arm manipulation settings.
- Score: 11.048436789482189
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Efficiently generating grasp poses tailored to specific regions of an object is vital for various robotic manipulation tasks, especially in a dual-arm setup. This scenario presents a significant challenge due to the complex geometries involved, requiring a deep understanding of the local geometry to generate grasps efficiently on the specified constrained regions. Existing methods only explore settings involving table-top/small objects and require augmented datasets to train, limiting their performance on complex objects. We propose CGDF: Constrained Grasp Diffusion Fields, a diffusion-based grasp generative model that generalizes to objects with arbitrary geometries, as well as generates dense grasps on the target regions. CGDF uses a part-guided diffusion approach that enables it to get high sample efficiency in constrained grasping without explicitly training on massive constraint-augmented datasets. We provide qualitative and quantitative comparisons using analytical metrics and in simulation, in both unconstrained and constrained settings to show that our method can generalize to generate stable grasps on complex objects, especially useful for dual-arm manipulation settings, while existing methods struggle to do so.
Related papers
- Diffusion Suction Grasping with Large-Scale Parcel Dataset [6.112197264635304]
We present Parcel-Suction-Dataset, a large-scale synthetic dataset containing 25 thousand cluttered scenes with 410 million precision-annotated suction grasp poses.
This dataset is generated through our novel geometric sampling algorithm that enables efficient generation of optimal suction grasps.
We also propose Diffusion-Suction, an innovative framework that reformulates suction grasp prediction as a conditional generation task.
arXiv Detail & Related papers (2025-02-11T04:09:11Z) - DCUDF2: Improving Efficiency and Accuracy in Extracting Zero Level Sets from Unsigned Distance Fields [11.397415082340482]
Unsigned distance fields (UDFs) allow for the representation of models with complex topologies, but accurate zero level sets from these fields poses significant challenges.
We introduceDF2, an enhancement over the current state-of-the-art method--for extracting zero level sets from UDFs.
Our approach utilizes an accuracy-aware loss function, enhanced with self-adaptive weights, to improve geometric quality significantly.
arXiv Detail & Related papers (2024-08-30T13:31:15Z) - GIC: Gaussian-Informed Continuum for Physical Property Identification and Simulation [60.33467489955188]
This paper studies the problem of estimating physical properties (system identification) through visual observations.
To facilitate geometry-aware guidance in physical property estimation, we introduce a novel hybrid framework.
We propose a new dynamic 3D Gaussian framework based on motion factorization to recover the object as 3D Gaussian point sets.
In addition to the extracted object surfaces, the Gaussian-informed continuum also enables the rendering of object masks during simulations.
arXiv Detail & Related papers (2024-06-21T07:37:17Z) - GraCo: Granularity-Controllable Interactive Segmentation [52.9695642626127]
Granularity-Controllable Interactive (GraCo) is a novel approach that allows precise control of prediction granularity by introducing additional parameters to input.
GraCo exploits the semantic property of the pre-trained IS model to automatically generate abundant mask-granularity pairs.
Experiments on intricate scenarios at object and part levels demonstrate that our GraCo has significant advantages over previous methods.
arXiv Detail & Related papers (2024-05-01T15:50:16Z) - Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems [3.6773638205393198]
Efficient inference in high-dimensional models is a central challenge in machine learning.
We introduce the Gaussian Ensemble Belief Propagation (GEnBP) algorithm.
We show that GEnBP outperforms existing belief methods in terms of accuracy and computational efficiency.
arXiv Detail & Related papers (2024-02-13T03:31:36Z) - T1: Scaling Diffusion Probabilistic Fields to High-Resolution on Unified
Visual Modalities [69.16656086708291]
Diffusion Probabilistic Field (DPF) models the distribution of continuous functions defined over metric spaces.
We propose a new model comprising of a view-wise sampling algorithm to focus on local structure learning.
The model can be scaled to generate high-resolution data while unifying multiple modalities.
arXiv Detail & Related papers (2023-05-24T03:32:03Z) - A Generalized EigenGame with Extensions to Multiview Representation
Learning [0.28647133890966997]
Generalized Eigenvalue Problems (GEPs) encompass a range of interesting dimensionality reduction methods.
We develop an approach to solving GEPs in which all constraints are softly enforced by Lagrange multipliers.
We show that our approaches share much of the theoretical grounding of the previous Hebbian and game theoretic approaches for the linear case.
We demonstrate the effectiveness of our method for solving GEPs in the setting of canonical multiview datasets.
arXiv Detail & Related papers (2022-11-21T10:11:13Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Locally induced Gaussian processes for large-scale simulation
experiments [0.0]
We show how placement of inducing points and their multitude can be thwarted by pathologies.
Our proposed methodology hybridizes global inducing point and data subset-based local GP approximation.
We show that local inducing points extend their global and data-subset component parts on the accuracy--computational efficiency frontier.
arXiv Detail & Related papers (2020-08-28T21:37:46Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.