論文の概要: LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles
- arxiv url: http://arxiv.org/abs/2208.03399v1
- Date: Fri, 5 Aug 2022 22:30:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-09 12:51:43.704350
- Title: LCCDE: A Decision-Based Ensemble Framework for Intrusion Detection in
The Internet of Vehicles
- Title(参考訳): LCCDE: 車両のインターネットにおける侵入検知のための決定に基づくアンサンブルフレームワーク
- Authors: Li Yang, Abdallah Shami, Gary Stevens, Stephen De Rusett
- Abstract要約: 悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が開発されている。
我々は、LCCDE(Lead Class and Confidence Decision Ensemble)という新しいアンサンブルIDSフレームワークを提案する。
LCCDEは、3つの高度なアルゴリズムの中で最高のパフォーマンスのMLモデルを決定することで構成される。
- 参考スコア(独自算出の注目度): 7.795462813462946
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern vehicles, including autonomous vehicles and connected vehicles, have
adopted an increasing variety of functionalities through connections and
communications with other vehicles, smart devices, and infrastructures.
However, the growing connectivity of the Internet of Vehicles (IoV) also
increases the vulnerabilities to network attacks. To protect IoV systems
against cyber threats, Intrusion Detection Systems (IDSs) that can identify
malicious cyber-attacks have been developed using Machine Learning (ML)
approaches. To accurately detect various types of attacks in IoV networks, we
propose a novel ensemble IDS framework named Leader Class and Confidence
Decision Ensemble (LCCDE). It is constructed by determining the best-performing
ML model among three advanced ML algorithms (XGBoost, LightGBM, and CatBoost)
for every class or type of attack. The class leader models with their
prediction confidence values are then utilized to make accurate decisions
regarding the detection of various types of cyber-attacks. Experiments on two
public IoV security datasets (Car-Hacking and CICIDS2017 datasets) demonstrate
the effectiveness of the proposed LCCDE for intrusion detection on both
intra-vehicle and external networks.
- Abstract(参考訳): 自動運転車やコネクテッドカーを含む現代の車両は、他の車両、スマートデバイス、インフラとの接続や通信を通じて、様々な機能を取り入れている。
しかし、インターネット・オブ・ビークルズ(IoV)の接続が増加すると、ネットワーク攻撃に対する脆弱性も増大する。
IoVシステムをサイバー脅威から保護するために、悪意のあるサイバー攻撃を識別できる侵入検知システム(IDS)が機械学習(ML)アプローチを用いて開発された。
IoVネットワークにおける様々な種類の攻撃を正確に検出するために,新しいICSフレームワークであるLead Class and Confidence Decision Ensemble (LCCDE)を提案する。
クラスやタイプの攻撃に対して、3つの高度なMLアルゴリズム(XGBoost、LightGBM、CatBoost)の中で最高のパフォーマンスのMLモデルを決定することで構築される。
クラスリーダーモデルは、その予測信頼度値を用いて、様々なサイバー攻撃の検出に関する正確な決定を行う。
2つの公開iovセキュリティデータセット(car-hackingとcicids2017データセット)の実験は、車内および外部ネットワークにおける侵入検出における提案のlccdeの有効性を示している。
関連論文リスト
- CANEDERLI: On The Impact of Adversarial Training and Transferability on CAN Intrusion Detection Systems [17.351539765989433]
車両と外部ネットワークの統合が拡大し、コントロールエリアネットワーク(CAN)の内部バスをターゲットにした攻撃が急増した。
対策として,様々な侵入検知システム(IDS)が文献で提案されている。
これらのシステムのほとんどは、機械学習(ML)やディープラーニング(DL)モデルのような、データ駆動のアプローチに依存しています。
本稿では,CANベースのIDSをセキュアにするための新しいフレームワークであるCANEDERLIを提案する。
論文 参考訳(メタデータ) (2024-04-06T14:54:11Z) - SISSA: Real-time Monitoring of Hardware Functional Safety and
Cybersecurity with In-vehicle SOME/IP Ethernet Traffic [49.549771439609046]
本稿では,車内機能安全とサイバーセキュリティをモデル化・解析するためのSOME/IP通信トラフィックベースアプローチであるSISSAを提案する。
具体的には、SISSAはWeibullディストリビューションでハードウェア障害をモデル化し、SOME/IP通信に対する5つの潜在的な攻撃に対処する。
広範囲な実験結果から,SISSAの有効性と有効性が確認された。
論文 参考訳(メタデータ) (2024-02-21T03:31:40Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - An Explainable Ensemble-based Intrusion Detection System for Software-Defined Vehicle Ad-hoc Networks [0.0]
本研究では,アンサンブルに基づく機械学習による車両ネットワークにおけるサイバー脅威の検出について検討する。
我々は,Random Forest と CatBoost を主要な研究者として用いたモデルを提案し,ロジスティック回帰を用いて最終的な決定を下す。
我々は,本手法が分類精度を向上し,過去の研究に比べて誤分類が少ないことを観察した。
論文 参考訳(メタデータ) (2023-12-08T10:39:18Z) - When Authentication Is Not Enough: On the Security of Behavioral-Based Driver Authentication Systems [53.2306792009435]
我々はランダムフォレストとリカレントニューラルネットワークアーキテクチャに基づく2つの軽量ドライバ認証システムを開発した。
我々は,SMARTCANとGANCANという2つの新しいエスケープアタックを開発することで,これらのシステムに対する攻撃を最初に提案する。
コントリビューションを通じて、これらのシステムを安全に採用する実践者を支援し、車の盗難を軽減し、ドライバーのセキュリティを高める。
論文 参考訳(メタデータ) (2023-06-09T14:33:26Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
接続輸送システムにおいて、適応交通信号制御装置(ATSC)は、車両から受信したリアルタイム車両軌跡データを利用して、グリーンタイムを規制する。
この無線接続されたATSCはサイバー攻撃面を増やし、その脆弱性を様々なサイバー攻撃モードに拡大する。
そのようなモードの1つは、攻撃者がネットワーク内で偽の車両を作成する「シビル」攻撃である。
RLエージェントは、シビル車噴射の最適速度を学習し、アプローチの混雑を生じさせるように訓練される
論文 参考訳(メタデータ) (2022-10-31T20:12:17Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Simulating Malicious Attacks on VANETs for Connected and Autonomous
Vehicle Cybersecurity: A Machine Learning Dataset [0.4129225533930965]
コネクテッド・アンド・オートマチック・ビークルズ(CAV)はVehicular Adhoc Networksに頼り、安全運転を支援するために車両と道路インフラストラクチャー間の無線通信を行っている。
サイバーセキュリティ攻撃はVANETとCAVの安全な運用に脅威をもたらす。
本研究では,悪質な攻撃を受ける可能性のある典型的な通信シナリオをモデル化するためのシミュレーション手法を提案する。
論文 参考訳(メタデータ) (2022-02-15T20:08:58Z) - A Transfer Learning and Optimized CNN Based Intrusion Detection System
for Internet of Vehicles [10.350337750192997]
本稿では,インターネット・オブ・ビークルズ(IoV)システムにおいて,トランスファー学習とアンサンブル学習に基づくIDSを提案する。
提案されたIDSは、2つの公開ベンチマークIoVセキュリティデータセットで99.25%以上の検出率とF1スコアを示した。
本研究は車内ネットワークおよび車外ネットワークにおけるサイバー攻撃検出におけるIDSの有効性を示す。
論文 参考訳(メタデータ) (2022-01-27T21:24:09Z) - CAN-LOC: Spoofing Detection and Physical Intrusion Localization on an
In-Vehicle CAN Bus Based on Deep Features of Voltage Signals [48.813942331065206]
車両内ネットワークのためのセキュリティ強化システムを提案する。
提案システムは,CANバスで測定した電圧信号から抽出した深い特徴を処理する2つの機構を含む。
論文 参考訳(メタデータ) (2021-06-15T06:12:33Z) - MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet
of Vehicles [12.280524044112708]
車両ネットワークに対する既知の攻撃と未知の攻撃の両方を検出するために,ハイブリッド侵入検知システム (IDS) を提案する。
提案システムは,CAN-Intrusion-datasetにおいて,99.99%の精度で様々な種類の既知の攻撃を検出できる。
車両レベルのマシン上の各データパケットの平均処理時間は0.6ms未満である。
論文 参考訳(メタデータ) (2021-05-26T17:36:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。