論文の概要: Algorithmic Misjudgement in Google Search Results: Evidence from Auditing the US Online Electoral Information Environment
- arxiv url: http://arxiv.org/abs/2404.04684v1
- Date: Sat, 6 Apr 2024 17:09:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 20:00:13.111777
- Title: Algorithmic Misjudgement in Google Search Results: Evidence from Auditing the US Online Electoral Information Environment
- Title(参考訳): Google検索結果におけるアルゴリズムの誤用:米国オンライン選挙情報環境監査の証拠
- Authors: Brooke Perreault, Johanna Lee, Ropafadzo Shava, Eni Mustafaraj,
- Abstract要約: 政府の管理するウェブドメインは、2022年のアメリカ合衆国中間選挙の選挙情報のオンライン環境に代表される。
有機的な結果の約40%は、政府の領域の40%が貢献していることがわかった。
我々は,非フェデラルウェブサイトの欠落や誤用を,市民の危害に寄与するアルゴリズム的誤判断の一形態とみなす。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Google Search is an important way that people seek information about politics, and Google states that it is ``committed to providing timely and authoritative information on Google Search to help voters understand, navigate, and participate in democratic processes''. In this paper, we interrogate the extent to which government-maintained web domains are represented in the online environment of electoral information of the 2022 US midterm elections, as captured through Google Search results in 3.45 million SERPs for 786 locations across the United States between October and November 2022. Although we find that almost 40% of organic results are contributed by the 40% of government domains, this proportional equilibrium hides the fact that most results either belong to a small number of popular domains or are mistargeted (at a rate of 71.18%) with respect to the location of the search. We consider the frequent omission and mistargeting of non-federal websites a form of algorithmic misjudgement that contributes to civic harm, by obscuring the important role that these institutions play in the election information environment.
- Abstract(参考訳): Google検索は人々が政治に関する情報を求める重要な方法であり、Googleは「有権者が民主的プロセスを理解し、ナビゲートし、参加するのを助けるために、Google検索にタイムリーで権威のある情報を提供することが義務付けられている」と述べている。
本稿では,2022年10月から11月にかけて,米国中道選挙の選挙情報において,政府が保持するWebドメインがオンライン環境にどの程度表示されているのかを問う。
この比例平衡は、ほとんどの結果が少数の人気ドメインに属しているか、探索の場所に関して(71.18%の率で)誤用されているという事実を隠している。
我々は,選挙情報環境において,これらの機関が果たす重要な役割を解明することにより,非フェデラルウェブサイトの欠落や不正を,市民の害に寄与するアルゴリズム的誤判断の一形態とみなす。
関連論文リスト
- Auditing Google's Search Algorithm: Measuring News Diversity Across Brazil, the UK, and the US [0.0]
本研究では,ブラジル,イギリス,米国における検索結果の分析により,Googleの検索アルゴリズムがニュースの多様性に与える影響について検討した。
Googleのシステムは、限られた数のニュースメディアを優先的に好んでいる。
発見は、検索結果のわずかに左に偏りを示し、人気のある、しばしば全国のメディアを好んでいることを示している。
論文 参考訳(メタデータ) (2024-10-31T11:49:16Z) - On the Use of Proxies in Political Ad Targeting [49.61009579554272]
我々は、主要な政治広告主がプロキシ属性をターゲットとして緩和を回避したことを示す。
本研究は政治広告の規制に関する議論に重要な意味を持つ。
論文 参考訳(メタデータ) (2024-10-18T17:15:13Z) - Differentially Private Data Release on Graphs: Inefficiencies and Unfairness [48.96399034594329]
本稿では,ネットワーク情報公開の文脈における偏見と不公平性に対する差別的プライバシの影響を特徴づける。
ネットワーク構造が全員に知られているネットワークリリースの問題を考えるが、エッジの重みをプライベートにリリースする必要がある。
我々の研究は、これらのネットワーク化された決定問題におけるプライバシーに起因する偏見と不公平性に関する理論的根拠と実証的な証拠を提供する。
論文 参考訳(メタデータ) (2024-08-08T08:37:37Z) - Unveiling the Hidden Agenda: Biases in News Reporting and Consumption [59.55900146668931]
イタリアのワクチン論争に関する6年間のデータセットを構築し、物語と選択バイアスを特定するためにベイジアン潜在空間モデルを採用する。
バイアスとエンゲージメントの間に非線形な関係が見られ、極端な位置へのエンゲージメントが高くなった。
Twitter上でのニュース消費の分析は、同様のイデオロギー的な立場のニュースメディアの間で、一般的なオーディエンスを明らかにしている。
論文 参考訳(メタデータ) (2023-01-14T18:58:42Z) - Novelty in news search: a longitudinal study of the 2020 US elections [62.997667081978825]
我々は、トップニュース検索結果に現れる新しい項目を測定するノベルティを解析する。
トピックや安定したクエリに比べて,選挙関連クエリに新たな項目が出現する傾向にある。
このような不均衡は、選挙期間中のニュース検索における政治候補者の可視性に影響を与えると論じる。
論文 参考訳(メタデータ) (2022-11-09T08:42:37Z) - Personalization of Web Search During the 2020 US Elections [0.0]
本稿では,ユーザ特性と行動が検索結果に与える影響について,政治的に関係のある文脈で検討する。
私たちは、25の都市にランダムに配置されている150人の合成インターネットユーザーを編成しました。
これらのユーザーは、閲覧好みや政治的イデオロギーが異なるため、現実的な閲覧履歴や検索履歴を構築することができる。
論文 参考訳(メタデータ) (2022-09-28T11:18:56Z) - Measuring and mitigating voting access disparities: a study of race and
polling locations in Florida and North Carolina [6.236769041115903]
投票権の抑制と選挙権に対する人種的格差は、アメリカ合衆国における長年の公民権問題である。
ポーリング位置へのアクセスを定量化し、ポーリング位置の「負荷」とポーリング位置の距離における人種格差の校正手法を開発した。
これらのアルゴリズムを2020年の選挙の位置情報データに適用することは、より多くの投票場所を割り当てるコストと、アクセス格差に対する潜在的な影響の間のトレードオフを露呈し、調査するのに役立ちます。
論文 参考訳(メタデータ) (2022-05-30T06:13:19Z) - Searching for Representation: A sociotechnical audit of googling for
members of U.S. Congress [2.4366811507669124]
トップのGoogle検索結果の10%は、カリフォルニア州の議員を特定するために検索を利用する情報検索者を誤解させる可能性が高い。
誤解を招く結果の70%は、有機検索結果の上の特徴的スニペットに現れる。
特定された要因には、Googleがウィキペディアに大きく依存していること、権威の欠如、マシンパーサブル、地理的な位置に基づく選出された役人の身元に関する高精度なデータ、検索エンジンの未特定クエリの扱いなどがある。
論文 参考訳(メタデータ) (2021-09-14T23:13:02Z) - The Matter of Chance: Auditing Web Search Results Related to the 2020
U.S. Presidential Primary Elections Across Six Search Engines [68.8204255655161]
私たちは、Google、Baidu、Bing、DuckDuckGo、Yahoo、Yandexの"US Election"、"Donald trump"、"Joe Biden"、"bernie Sanders"の検索結果を調べます。
その結果, 検索エンジン間の検索結果と, エージェント間の検索結果の相違が有意な差があることが示唆された。
論文 参考訳(メタデータ) (2021-05-03T11:18:19Z) - Political audience diversity and news reliability in algorithmic ranking [54.23273310155137]
本稿では,ウェブサイトのオーディエンスの政治的多様性を質の指標として活用することを提案する。
ドメインの専門家によるニュースソースの信頼性評価と6,890人の米国市民の多様なサンプルによるWebブラウジングデータを用いて、より極端な、政治的に多様性の低いWebサイトが、ジャーナリストの基準を低くしていることを示す。
論文 参考訳(メタデータ) (2020-07-16T02:13:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。