論文の概要: SqueezeAttention: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget
- arxiv url: http://arxiv.org/abs/2404.04793v1
- Date: Sun, 7 Apr 2024 03:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 19:40:41.291290
- Title: SqueezeAttention: 2D Management of KV-Cache in LLM Inference via Layer-wise Optimal Budget
- Title(参考訳): SqueezeAttention:レイヤワイド最適予算によるLLM推論におけるKVキャッシュの2次元管理
- Authors: Zihao Wang, Shaoduo Gan,
- Abstract要約: 注意層の重要性を同定することにより、KV-cacheを2次元から共同で最適化できることが判明した。
シーケンスとレイヤの寸法からKVキャッシュを最適化することで、SqueezeAttentionはメモリの約30%から70%の削減と最大2.2倍のスループット向上を実現している。
- 参考スコア(独自算出の注目度): 11.977210887770225
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Optimizing the Key-Value (KV) cache of the Large Language Model (LLM) has been considered critical to saving the cost of inference. Most of the existing KV-cache compression algorithms attempted to sparsify the sequence of tokens by taking advantage of the different importance of tokens. In this work, we found that by identifying the importance of attention layers, we could optimize the KV-cache jointly from two dimensions. Based on our observations regarding layer-wise importance in inference, we propose SqueezeAttention to precisely optimize the allocation of KV-cache budget among layers on-the-fly and then incorporate three representative token sparsification algorithms to compress the KV-cache for each layer with its very own budget. By optimizing the KV-cache from both sequence's and layer's dimensions, SqueezeAttention achieves around 30% to 70% of the memory reductions and up to 2.2 times of throughput improvements in a wide range of LLMs and benchmarks. The code is available at https://github.com/hetailang/SqueezeAttention.
- Abstract(参考訳): 大規模言語モデル(LLM)のキーバリュー(KV)キャッシュの最適化は、推論コストの削減に不可欠であると考えられている。
既存のKV-cache圧縮アルゴリズムのほとんどは、トークンの異なる重要性を生かしてトークンのシーケンスをスパース化しようとした。
本研究では,注意層の重要性を同定することにより,KV-cacheを2次元から共同で最適化できることを見出した。
提案手法は,各層にKVキャッシュを圧縮するための3つの代表的なトークンスペーシフィケーションアルゴリズムを組み込むことで,各層にKVキャッシュの割り当てを正確に最適化するものである。
シーケンスとレイヤの双方の次元からKVキャッシュを最適化することで、SqueezeAttentionはメモリの約30%から70%の削減を実現し、幅広いLCMやベンチマークで最大2.2倍のスループット向上を実現している。
コードはhttps://github.com/hetailang/SqueezeAttentionで入手できる。
関連論文リスト
- BaKlaVa -- Budgeted Allocation of KV cache for Long-context Inference [6.222836318380985]
BaKlaVaは、モデル全体で個々のKVキャッシュに対して最適なメモリを割り当てる手法である。
LLaMA-3-8BモデルとQwen2.5-7Bモデルについて検討した。
論文 参考訳(メタデータ) (2025-02-18T04:08:29Z) - More Tokens, Lower Precision: Towards the Optimal Token-Precision Trade-off in KV Cache Compression [71.42818367729573]
大規模言語モデル(LLM)では、KVキャッシュのメモリ使用量は推論において重大なボトルネックとなっている。
KVプルーニングやKV量子化を含む主流のKV圧縮法は、主にトークンまたは精度寸法を別々に扱う。
本稿では,KVキャッシュ圧縮におけるトークン精度トレードオフを包括的に検討する。
論文 参考訳(メタデータ) (2024-12-17T09:20:31Z) - ZigZagkv: Dynamic KV Cache Compression for Long-context Modeling based on Layer Uncertainty [35.947737679664016]
推論長が増加するにつれて、KVキャッシュの増加はメモリ外問題を引き起こす可能性がある。
本稿では,各層に予算規模を割り当てるために,層不確実性を利用した簡易かつ効果的なKVキャッシュ圧縮手法を提案する。
実験の結果,提案手法はフルKV推定と比較して,KVキャッシュのメモリ使用量を$sim$20%に削減できることがわかった。
論文 参考訳(メタデータ) (2024-12-12T07:52:56Z) - EMS: Adaptive Evict-then-Merge Strategy for Head-wise KV Cache Compression Based on Global-Local Importance [44.14919492126948]
メモリオーバーヘッドが重要になるにつれて、KVキャッシュの効率的な圧縮が注目されている。
我々は,これらの制限を克服すると同時に,極端な圧縮比下でのKVキャッシュ圧縮を向上するEMSを提案する。
EMSは最低の難易度を一貫して達成し、256のキャッシュ予算の下でLongBench上の4つのLLMで1.28ポイント以上改善し、Needdle-in-a-Haystackタスクのコンテキスト長の2%未満のキャッシュ予算で95%の検索精度を維持している。
論文 参考訳(メタデータ) (2024-12-11T16:35:13Z) - PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
キー値(KV)キャッシュは、長い入力シーケンスと出力シーケンスを必要とするが、特に高い推論コストに寄与する。
ここでは,すべてのレイヤのKVキャッシュサイズを決定するという課題を,最適なグローバルプレフィックス設定を探すタスクに再編成するPrefixKVを提案する。
本手法は他の手法と比較して最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-12-04T15:48:59Z) - ClusterKV: Manipulating LLM KV Cache in Semantic Space for Recallable Compression [10.003118268356017]
ロングコンテキストは推論効率に重大な課題をもたらす。
本稿では,意味クラスタの粒度でトークンをリコールするClusterKVを紹介する。
実験結果から、ClusterKVは32kのコンテキスト長を持つ様々なタスクにおいて、無視可能な精度の損失が得られることがわかった。
論文 参考訳(メタデータ) (2024-12-04T10:58:27Z) - KVSharer: Efficient Inference via Layer-Wise Dissimilar KV Cache Sharing [58.29726147780976]
我々は,層間をKVキャッシュで共有し,層間圧縮を実現する,textit KVSharerと呼ばれるプラグアンドプレイ方式を提案する。
実験の結果、textit KVSharerはKVキャッシュの計算を30%削減し、メモリ消費を削減できることがわかった。
我々は,textit KVSharerが既存の層内KVキャッシュ圧縮手法と互換性があることを検証する。
論文 参考訳(メタデータ) (2024-10-24T08:06:41Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
大規模言語モデル(LLM)は自然言語処理の分野に革命をもたらし、様々なアプリケーションで前例のない性能を達成した。
本稿では,KVキャッシュのメモリ消費の非効率性に対処する長文シナリオに焦点を当てた。
我々は,最小のチャネルを選択的に切断しながら,注目重量損失を最小限に抑える新しいクエリ依存型KVキャッシュプルーニング手法であるThinKを提案する。
論文 参考訳(メタデータ) (2024-07-30T17:59:08Z) - Model Tells You Where to Merge: Adaptive KV Cache Merging for LLMs on Long-Context Tasks [21.815661269986425]
KVMergerと呼ばれる新しいKVキャッシュマージ手法を提案し、長文タスクに対して適応的なKVキャッシュ圧縮を実現する。
我々のアプローチは、キー状態が1つのシーケンス内のトークンレベルで高い類似性を示すという興味深い観察にインスパイアされている。
我々は,制約メモリ予算下での長時間コンテキストタスクに対するKVMergerの有効性を示すため,広範囲な実験を行った。
論文 参考訳(メタデータ) (2024-07-11T12:50:42Z) - PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling [53.08975547824068]
本研究では,大規模言語モデル(LLM)内の注意に基づく情報フローが,長期的文脈処理のための顕著なパターンによって集約されるかどうかを検討する。
観測の結果,LLMは下層に広く注意が散らばっているピラミッド情報ファンリングを通じて情報を集約することがわかった。
これらの知見に触発され、我々は新しい効率的なKVキャッシュ圧縮法であるPraamid KVを開発した。
論文 参考訳(メタデータ) (2024-06-04T07:51:30Z) - MiniCache: KV Cache Compression in Depth Dimension for Large Language Models [48.03117580340151]
キーバリュー(KV)キャッシュは、以前に生成されたトークンのキー値状態を格納する。
KVキャッシュのサイズはシーケンス長とともに線形に増加し、長いコンテキスト入力と広範囲なシーケンス生成を必要とするアプリケーションの課題を提起する。
レイヤ間のKVキャッシュを,新しい奥行きの観点から圧縮する,MiniCacheという,シンプルで効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-23T09:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。