Initial Exploration of Zero-Shot Privacy Utility Tradeoffs in Tabular Data Using GPT-4
- URL: http://arxiv.org/abs/2404.05047v1
- Date: Sun, 7 Apr 2024 19:02:50 GMT
- Title: Initial Exploration of Zero-Shot Privacy Utility Tradeoffs in Tabular Data Using GPT-4
- Authors: Bishwas Mandal, George Amariucai, Shuangqing Wei,
- Abstract summary: We investigate the application of large language models (LLMs) to scenarios involving the tradeoff between privacy and utility in tabular data.
Our approach entails prompting GPT-4 by transforming data points into textual format, followed by the inclusion of precise sanitization instructions in a zero-shot manner.
We find that this relatively simple approach yields performance comparable to more complex adversarial optimization methods used for managing privacy-utility tradeoffs.
- Score: 2.54365580380609
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the application of large language models (LLMs), specifically GPT-4, to scenarios involving the tradeoff between privacy and utility in tabular data. Our approach entails prompting GPT-4 by transforming tabular data points into textual format, followed by the inclusion of precise sanitization instructions in a zero-shot manner. The primary objective is to sanitize the tabular data in such a way that it hinders existing machine learning models from accurately inferring private features while allowing models to accurately infer utility-related attributes. We explore various sanitization instructions. Notably, we discover that this relatively simple approach yields performance comparable to more complex adversarial optimization methods used for managing privacy-utility tradeoffs. Furthermore, while the prompts successfully obscure private features from the detection capabilities of existing machine learning models, we observe that this obscuration alone does not necessarily meet a range of fairness metrics. Nevertheless, our research indicates the potential effectiveness of LLMs in adhering to these fairness metrics, with some of our experimental results aligning with those achieved by well-established adversarial optimization techniques.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Differentially Private Active Learning: Balancing Effective Data Selection and Privacy [11.716423801223776]
We introduce differentially private active learning (DP-AL) for standard learning settings.
We demonstrate that naively integrating DP-SGD training into AL presents substantial challenges in privacy budget allocation and data utilization.
Our experiments on vision and natural language processing tasks show that DP-AL can improve performance for specific datasets and model architectures.
arXiv Detail & Related papers (2024-10-01T09:34:06Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Protecting Privacy Through Approximating Optimal Parameters for Sequence Unlearning in Language Models [37.172662930947446]
Language models (LMs) are potentially vulnerable to extraction attacks, which represent a significant privacy risk.
We propose Privacy Protection via Optimal Parameters (POP), a novel unlearning method that effectively forgets the target token sequences from the pretrained LM.
POP exhibits remarkable retention performance post-unlearning across 9 classification and 4 dialogue benchmarks, outperforming the state-of-the-art by a large margin.
arXiv Detail & Related papers (2024-06-20T08:12:49Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
We introduce Contextual Privacy Protection Language Models (PrivacyMind)
Our work offers a theoretical analysis for model design and benchmarks various techniques.
In particular, instruction tuning with both positive and negative examples stands out as a promising method.
arXiv Detail & Related papers (2023-10-03T22:37:01Z) - Approximate, Adapt, Anonymize (3A): a Framework for Privacy Preserving
Training Data Release for Machine Learning [3.29354893777827]
We introduce a data release framework, 3A (Approximate, Adapt, Anonymize), to maximize data utility for machine learning.
We present experimental evidence showing minimal discrepancy between performance metrics of models trained on real versus privatized datasets.
arXiv Detail & Related papers (2023-07-04T18:37:11Z) - Private Set Generation with Discriminative Information [63.851085173614]
Differentially private data generation is a promising solution to the data privacy challenge.
Existing private generative models are struggling with the utility of synthetic samples.
We introduce a simple yet effective method that greatly improves the sample utility of state-of-the-art approaches.
arXiv Detail & Related papers (2022-11-07T10:02:55Z) - Improving the Adversarial Robustness of NLP Models by Information
Bottleneck [112.44039792098579]
Non-robust features can be easily manipulated by adversaries to fool NLP models.
In this study, we explore the feasibility of capturing task-specific robust features, while eliminating the non-robust ones by using the information bottleneck theory.
We show that the models trained with our information bottleneck-based method are able to achieve a significant improvement in robust accuracy.
arXiv Detail & Related papers (2022-06-11T12:12:20Z) - Differentially Private Synthetic Data: Applied Evaluations and
Enhancements [4.749807065324706]
Differentially private data synthesis protects personal details from exposure.
We evaluate four differentially private generative adversarial networks for data synthesis.
We propose QUAIL, an ensemble-based modeling approach to generating synthetic data.
arXiv Detail & Related papers (2020-11-11T04:03:08Z) - Privacy Enhancing Machine Learning via Removal of Unwanted Dependencies [21.97951347784442]
This paper studies new variants of supervised and adversarial learning methods, which remove the sensitive information in the data before they are sent out for a particular application.
The explored methods optimize privacy preserving feature mappings and predictive models simultaneously in an end-to-end fashion.
Experimental results on mobile sensing and face datasets demonstrate that our models can successfully maintain the utility performances of predictive models while causing sensitive predictions to perform poorly.
arXiv Detail & Related papers (2020-07-30T19:55:10Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.