論文の概要: A robust assessment for invariant representations
- arxiv url: http://arxiv.org/abs/2404.05058v1
- Date: Sun, 7 Apr 2024 20:05:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 18:41:48.788683
- Title: A robust assessment for invariant representations
- Title(参考訳): 不変表現に対するロバストな評価
- Authors: Wenlu Tang, Zicheng Liu,
- Abstract要約: IRMに基づく手法に特化して,不変性能を評価する新しい手法を提案する。
我々は、確率比を用いて、異なる環境にわたる不変予測器の条件予測の間の橋渡しを確立する。
提案する基準は、不変性能を評価するための堅牢な基盤を提供する。
- 参考スコア(独自算出の注目度): 10.949263264442349
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The performance of machine learning models can be impacted by changes in data over time. A promising approach to address this challenge is invariant learning, with a particular focus on a method known as invariant risk minimization (IRM). This technique aims to identify a stable data representation that remains effective with out-of-distribution (OOD) data. While numerous studies have developed IRM-based methods adaptive to data augmentation scenarios, there has been limited attention on directly assessing how well these representations preserve their invariant performance under varying conditions. In our paper, we propose a novel method to evaluate invariant performance, specifically tailored for IRM-based methods. We establish a bridge between the conditional expectation of an invariant predictor across different environments through the likelihood ratio. Our proposed criterion offers a robust basis for evaluating invariant performance. We validate our approach with theoretical support and demonstrate its effectiveness through extensive numerical studies.These experiments illustrate how our method can assess the invariant performance of various representation techniques.
- Abstract(参考訳): 機械学習モデルのパフォーマンスは、時間とともにデータの変化によって影響を受ける可能性がある。
この課題に対処するための有望なアプローチは不変学習であり、特に不変リスク最小化(IRM)と呼ばれる手法に焦点を当てている。
本手法は, アウト・オブ・ディストリビューション(OOD)データに対して有効である安定なデータ表現を同定することを目的とする。
多くの研究がデータ拡張シナリオに適応するIRMベースの手法を開発してきたが、これらの表現が様々な条件下で不変性能をどの程度維持するかを直接評価することには注意が払われている。
本稿では,IRMに基づく手法に特化して,不変性能を評価する新しい手法を提案する。
我々は、確率比を用いて、異なる環境にわたる不変予測器の条件予測の間の橋渡しを確立する。
提案する基準は、不変性能を評価するための堅牢な基盤を提供する。
提案手法を理論的支援により検証し,その有効性を示す。これらの実験は,様々な表現技法の不変性を評価する方法を示す。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Exogenous Matching: Learning Good Proposals for Tractable Counterfactual Estimation [1.9662978733004601]
本稿では, 抽出可能かつ効率的な対実表現推定のための重要サンプリング手法を提案する。
対物推定器の共通上限を最小化することにより、分散最小化問題を条件分布学習問題に変換する。
構造因果モデル (Structure Causal Models, SCM) の様々なタイプと設定による実験による理論的結果の検証と, 対実推定タスクにおける性能の実証を行った。
論文 参考訳(メタデータ) (2024-10-17T03:08:28Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) は、ラベル付きソースドメインでトレーニングされたモデルを適用して、ラベルなしのターゲットドメインでデータ分散シフトをうまく実行する。
本稿では,DA手法の評価と,再重み付け,マッピング,部分空間アライメントなど,既存の浅層アルゴリズムの公平な評価を行うフレームワークを提案する。
本ベンチマークでは,現実的な検証の重要性を強調し,現実的なアプリケーションに対する実践的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-07-16T12:52:29Z) - Learning Non-Linear Invariants for Unsupervised Out-of-Distribution Detection [5.019613806273252]
非線型不変量学習が可能な正規化フロー様アーキテクチャからなるフレームワークを提案する。
提案手法は, 広範囲なU-OODベンチマークにおいて, 最先端の結果を得る。
論文 参考訳(メタデータ) (2024-07-04T16:01:21Z) - Out-of-Distribution Detection via Deep Multi-Comprehension Ensemble [11.542472900306745]
マルチComprehension (MC) Ensemble は,OOD (Out-of-Distribution) 特徴表現を拡大するための戦略として提案されている。
OOD検出におけるMC Ensemble戦略の優れた性能を示す実験結果を得た。
これにより,提案手法がトレーニング分布外のインスタンスを検出できるモデルの性能向上に有効であることを示す。
論文 参考訳(メタデータ) (2024-03-24T18:43:04Z) - A Conditioned Unsupervised Regression Framework Attuned to the Dynamic Nature of Data Streams [0.0]
本稿では,制限付きラベル付きデータを用いたストリーミング環境の最適戦略を提案し,教師なし回帰のための適応手法を提案する。
提案手法は,初期ラベルのスパースセットを活用し,革新的なドリフト検出機構を導入する。
適応性を高めるために,Adaptive WINdowingアルゴリズムとRoot Mean Square Error (RMSE)に基づく誤り一般化アルゴリズムを統合する。
論文 参考訳(メタデータ) (2023-12-12T19:23:54Z) - Conformal Inference for Invariant Risk Minimization [12.049545417799125]
機械学習モデルの応用は、分布シフトの発生によって著しく阻害される可能性がある。
この問題を解決する一つの方法は、不変リスク最小化(IRM)のような不変学習を用いて不変表現を取得することである。
本稿では,不変表現に対する不確実性推定を記述するために,分布自由予測領域を得る手法を提案する。
論文 参考訳(メタデータ) (2023-05-22T03:48:38Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。