論文の概要: A Note on LoRA
- arxiv url: http://arxiv.org/abs/2404.05086v1
- Date: Sun, 7 Apr 2024 22:00:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 16:02:57.610904
- Title: A Note on LoRA
- Title(参考訳): LoRAについて
- Authors: Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh, Weizhu Chen,
- Abstract要約: このノートは、当初議論されなかった新しい視点を提供することで、オリジナルのLoRA論文を拡張している。
新しい実験を導入することなく、我々はLoRAの理解と応用を改善することを目指している。
- 参考スコア(独自算出の注目度): 53.862304172882105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LoRA (Low-Rank Adaptation) has emerged as a preferred method for efficiently adapting Large Language Models (LLMs) with remarkable simplicity and efficacy. This note extends the original LoRA paper by offering new perspectives that were not initially discussed and presents a series of insights for deploying LoRA at scale. Without introducing new experiments, we aim to improve the understanding and application of LoRA.
- Abstract(参考訳): LoRA(Low-Rank Adaptation)は、LLM(Large Language Models)を驚くほど単純かつ効果的に適応させる方法として好まれている。
このノートは、最初に議論されなかった新しい視点を提供し、LoRAを大規模に展開するための一連の洞察を提示することによって、オリジナルのLoRA論文を拡張している。
新しい実験を導入することなく、我々はLoRAの理解と応用を改善することを目指している。
関連論文リスト
- LoRA-GGPO: Mitigating Double Descent in LoRA Fine-Tuning via Gradient-Guided Perturbation Optimization [12.504723188498]
大規模言語モデル(LLM)は自然言語処理において顕著な成功を収めた。
Low-Rank Adaptation (LoRA)は、パラメータ更新を低ランク行列で近似することで、実用的なソリューションとして登場した。
LoRA-GGPOは、勾配とウェイトノルムを利用して標的摂動を生成する新しい手法である。
論文 参考訳(メタデータ) (2025-02-20T13:14:41Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - RepLoRA: Reparameterizing Low-Rank Adaptation via the Perspective of Mixture of Experts [37.43961020113692]
低ランク適応 (LoRA) は、大規模基盤モデルを微調整するための強力な手法として登場した。
本稿では,LoRAモデルとMixture of Expertsモデルとの関連性を検討することによって,ロラの理論解析を行う。
論文 参考訳(メタデータ) (2025-02-05T10:03:09Z) - Robust Federated Finetuning of LLMs via Alternating Optimization of LoRA [14.789886179102425]
BERT-Efficient Fine-Tuning (PEFT) 法では、ローランド適応 (LoRA) は計算と通信のコストを削減し、フェデレーショントレーニングを最適化する。
ファインチューンなLoRAアダプタに交互に最適化を施した,フェデレートされたフレームワークであるRoLoRAを提案する。
論文 参考訳(メタデータ) (2025-02-03T19:02:00Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - Mixture of LoRA Experts [87.50120181861362]
本稿では,階層的制御と未分散分岐選択を利用する LoRA Experts (MoLE) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T11:59:53Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するための効率的なソリューションを提供する。
LoraRetrieverは、入力プロンプトに従って複数のLoRAを適応的に検索して構成する検索テーマ構成フレームワークである。
実験結果から、LoraRetrieverは一貫してベースラインを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-02-15T15:02:46Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。