論文の概要: A Note on LoRA
- arxiv url: http://arxiv.org/abs/2404.05086v1
- Date: Sun, 7 Apr 2024 22:00:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-04-09 16:02:57.610904
- Title: A Note on LoRA
- Title(参考訳): LoRAについて
- Authors: Vlad Fomenko, Han Yu, Jongho Lee, Stanley Hsieh, Weizhu Chen,
- Abstract要約: このノートは、当初議論されなかった新しい視点を提供することで、オリジナルのLoRA論文を拡張している。
新しい実験を導入することなく、我々はLoRAの理解と応用を改善することを目指している。
- 参考スコア(独自算出の注目度): 53.862304172882105
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LoRA (Low-Rank Adaptation) has emerged as a preferred method for efficiently adapting Large Language Models (LLMs) with remarkable simplicity and efficacy. This note extends the original LoRA paper by offering new perspectives that were not initially discussed and presents a series of insights for deploying LoRA at scale. Without introducing new experiments, we aim to improve the understanding and application of LoRA.
- Abstract(参考訳): LoRA(Low-Rank Adaptation)は、LLM(Large Language Models)を驚くほど単純かつ効果的に適応させる方法として好まれている。
このノートは、最初に議論されなかった新しい視点を提供し、LoRAを大規模に展開するための一連の洞察を提示することによって、オリジナルのLoRA論文を拡張している。
新しい実験を導入することなく、我々はLoRAの理解と応用を改善することを目指している。
関連論文リスト
- Analyzing the Impact of Low-Rank Adaptation for Cross-Domain Few-Shot Object Detection in Aerial Images [9.869549856965259]
本稿では,ローランド適応 (LoRA) の航空画像におけるクロスドメイン小ショット物体検出のための小型モデルへの適用について検討する。
LoRAはオーバーフィッティングを軽減し、リソース制約のある設定に対して有望なアプローチになる。
この結果から,初期微調整後にLoRAを適用した場合,低ショット設定時の性能が若干向上することがわかった。
論文 参考訳(メタデータ) (2025-04-08T14:10:39Z) - How Relevance Emerges: Interpreting LoRA Fine-Tuning in Reranking LLMs [20.353393773305672]
我々は,大規模言語モデルによる関連信号の学習と展開方法を理解するため,LoRAファインチューニングLLMの動作探索を行う。
われわれは,LoRA変換のどの層と突起が精度を高める上で最も重要であるかを明らかにする。
論文 参考訳(メタデータ) (2025-04-05T06:16:43Z) - Not All LoRA Parameters Are Essential: Insights on Inference Necessity [36.65493658174926]
そこで本研究では,各LoRA層がモデルの性能に与える影響について検討する。
本稿では,LoRAで微調整された大規模言語モデルの性能を向上させるための,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2025-03-30T08:33:04Z) - A Stronger Mixture of Low-Rank Experts for Fine-Tuning Foundation Models [22.457766373989365]
Low-Rank Adapters (LoRA) は、命令チューニングやドメイン適応など、様々な分野に広く採用されている。
LoRAの限られた表現能力に対処するため、複数のLoRAアダプタを組み込むためのMixture-of-Expert (MoE)が導入されている。
マルチスペースプロジェクションによる特徴学習手順の安定化と向上を図るため,MoE-LoRAの新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2025-02-20T05:58:53Z) - BeamLoRA: Beam-Constraint Low-Rank Adaptation [51.52097743781401]
Low-Rank Adaptation (LoRA) はパラメータ効率の良い微調整法として広く採用されている。
本研究では,各LoRAモジュールを,各ランクが潜在的サブソリューションに対応するビームとして概念化するビームロラを提案する。
論文 参考訳(メタデータ) (2025-02-19T10:33:22Z) - MiLoRA: Efficient Mixture of Low-Rank Adaptation for Large Language Models Fine-tuning [9.91790333647256]
低ランク適応法(LoRA)とその混合実験法(MOE)は,高効率なパラメータ効率微調整法(PEFT)である。
新規かつ効率的なLoRA変種であるMiLoRAを提案する。
MiLoRAは、各LoRAモジュールを専門家として考慮し、プロンプト対応のルーティング機構を採用することで、従来のMOEスタイルのLoRAメソッドと異なる。
論文 参考訳(メタデータ) (2024-10-23T17:04:40Z) - Task-Specific Directions: Definition, Exploration, and Utilization in Parameter Efficient Fine-Tuning [65.31677646659895]
大規模な言語モデルは、下流タスクで素晴らしいパフォーマンスを示すが、全てのパラメータを完全に微調整する場合は、リソース消費がかなり必要である。
本稿では,タスク固有の方向(TSD)を明確に定義するフレームワークを提案し,その特性と実用化の課題について検討する。
次に、微調整過程におけるTLDの影響を最大化する新しいアプローチであるLoRA-Dashを導入する。
論文 参考訳(メタデータ) (2024-09-02T08:10:51Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - A Survey on LoRA of Large Language Models [19.85250609150331]
低ランク適応(LoRA)は、高密度ニューラルネットワーク層をプラグ可能な低ランク行列で更新し、パラメータ効率の良い微調整パラダイムの1つである。
本調査は,(1)ダウンストリーム適応の改善による下流タスクにおけるLoRAの性能向上,(2)複数のLoRAプラグインを混合してタスク間一般化を実現するクロスタスク一般化手法,(3)LoRAの計算効率を高める効率改善手法,(4)フェデレート学習にLoRAを使用するデータプライバシ保護手法,(5)アプリケーションの観点から,進捗を分類し,レビューする。
論文 参考訳(メタデータ) (2024-07-08T12:32:10Z) - Mixture of LoRA Experts [87.50120181861362]
本稿では,階層的制御と未分散分岐選択を利用する LoRA Experts (MoLE) アプローチを提案する。
MoLEアプローチは直接算術マージよりも優れたLoRA融合性能を実現する。
論文 参考訳(メタデータ) (2024-04-21T11:59:53Z) - LoRA Dropout as a Sparsity Regularizer for Overfitting Control [18.992276878667997]
そこで本研究では,LoRA方式のドロップアウト機構を提案する。
適切な空間性は、経験的リスクと一般化リスクのギャップを狭めるのに役立ちます。
論文 参考訳(メタデータ) (2024-04-15T09:32:12Z) - ALoRA: Allocating Low-Rank Adaptation for Fine-tuning Large Language Models [8.251547772610301]
低ランク適応 (LoRA) の方法論を、低ランク適応 (AloRA) と呼ぶ革新的なアプローチに拡張する。
まず,各ランクの重要度を効果的に推定できる新しい手法であるAB-LoRAを提案する。
第2に、AB-LoRAによって導かれ、我々は徐々にLoRAのランクに多く負の影響を及ぼし、高いランクを必要とする重要なトランスフォーマーモジュールにローラの予算を割り当てる。
論文 参考訳(メタデータ) (2024-03-24T15:09:55Z) - ResLoRA: Identity Residual Mapping in Low-Rank Adaption [96.59370314485074]
低ランク適応(LoRA)の改良フレームワークであるResLoRAを提案する。
提案手法は,LoRAと比較してトレーニング可能なパラメータや推論コストを必要とせずに,より少ないトレーニングステップでより良い結果を得ることができる。
NLG,NLU,テキスト・ツー・イメージタスクの実験により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-02-28T04:33:20Z) - LoraRetriever: Input-Aware LoRA Retrieval and Composition for Mixed
Tasks in the Wild [76.67343971195267]
Low-Rank Adaptation (LoRA)は、大規模言語モデル(LLM)を微調整するための効率的なソリューションを提供する。
LoraRetrieverは、入力プロンプトに従って複数のLoRAを適応的に検索して構成する検索テーマ構成フレームワークである。
実験結果から、LoraRetrieverは一貫してベースラインを上回っていることが示唆された。
論文 参考訳(メタデータ) (2024-02-15T15:02:46Z) - Sparse Low-rank Adaptation of Pre-trained Language Models [79.74094517030035]
本稿では,適応過程における固有ランクの動的調整を可能にする疎低ランク適応(SoRA)を提案する。
提案手法は,LoRAを高いランクで初期化すると同時に,一時的に増大するパラメータを効率的に利用することにより,LoRAの表現力を向上する。
実験の結果,SoRAは70%の保持パラメータと70%のトレーニング時間でも,他のベースラインよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-20T11:56:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。