DLoRA: Distributed Parameter-Efficient Fine-Tuning Solution for Large Language Model
- URL: http://arxiv.org/abs/2404.05182v1
- Date: Mon, 8 Apr 2024 04:14:02 GMT
- Title: DLoRA: Distributed Parameter-Efficient Fine-Tuning Solution for Large Language Model
- Authors: Chao Gao, Sai Qian Zhang,
- Abstract summary: We propose a distributed parameter-efficient fine-tuning framework called DLoRA.
DLoRA enables scalable PEFT operations to be performed collaboratively between the cloud and user devices.
We show that DLoRA can significantly reduce the computation and communication workload over the user devices while achieving superior accuracy and privacy protection.
- Score: 17.688874383440208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To enhance the performance of large language models (LLM) on downstream tasks, one solution is to fine-tune certain LLM parameters and make it better align with the characteristics of the training dataset. This process is commonly known as parameter-efficient fine-tuning (PEFT). Due to the scale of LLM, PEFT operations are usually executed in the public environment (e.g., cloud server). This necessitates the sharing of sensitive user data across public environments, thereby raising potential privacy concerns. To tackle these challenges, we propose a distributed PEFT framework called DLoRA. DLoRA enables scalable PEFT operations to be performed collaboratively between the cloud and user devices. Coupled with the proposed Kill and Revive algorithm, the evaluation results demonstrate that DLoRA can significantly reduce the computation and communication workload over the user devices while achieving superior accuracy and privacy protection.
Related papers
- Parameter-Efficient Fine-Tuning of Large Language Models for Unit Test Generation: An Empirical Study [3.5189934649278922]
Large language models (LLMs) like GitHub Copilot struggle with real-world tasks without fine-tuning.
This paper investigates full fine-tuning and various PEFT methods, including LoRA, (IA)3, and prompt tuning.
Our findings show that PEFT methods can deliver performance comparable to full fine-tuning for unit test generation.
arXiv Detail & Related papers (2024-11-04T09:03:18Z) - Unleashing the Power of Task-Specific Directions in Parameter Efficient Fine-tuning [65.31677646659895]
This paper focuses on the concept of task-specific directions (TSDs)-critical for transitioning large models from pretrained states to task-specific enhancements in PEFT.
We introduce a novel approach, LoRA-Dash, which aims to maximize the impact of TSDs during the fine-tuning process, thereby enhancing model performance on targeted tasks.
arXiv Detail & Related papers (2024-09-02T08:10:51Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - FedBiOT: LLM Local Fine-tuning in Federated Learning without Full Model [48.33280660752336]
Large language models (LLMs) show amazing performance on many domain-specific tasks after fine-tuning with some appropriate data.
Many domain-specific data are privately distributed across multiple owners.
We introduce FedBiOT, a resource-efficient LLM fine-tuning approach to federated learning.
arXiv Detail & Related papers (2024-06-25T16:45:47Z) - Retrieval-Augmented Mixture of LoRA Experts for Uploadable Machine Learning [57.36978335727009]
Low-Rank Adaptation (LoRA) offers an efficient way to fine-tune large language models (LLMs)
In this paper, we propose a framework that adaptively retrieves and composes multiple LoRAs based on input prompts.
arXiv Detail & Related papers (2024-06-24T05:24:41Z) - Safe LoRA: the Silver Lining of Reducing Safety Risks when Fine-tuning Large Language Models [51.20476412037321]
Fine-tuning large language models (LLMs) is necessary to enhance their performance for customized datasets, domain-specific tasks, or other private needs.
Safe LoRA is a one-liner patch to the original LoRA implementation by introducing the projection of LoRA weights from selected layers to the safety-aligned subspace.
Our experiments demonstrate that when fine-tuning on purely malicious data, Safe LoRA retains similar safety performance as the original aligned model.
arXiv Detail & Related papers (2024-05-27T05:04:05Z) - VB-LoRA: Extreme Parameter Efficient Fine-Tuning with Vector Banks [10.266224162377371]
Low-rank adaptation (LoRA) and its variants incur substantial storage and transmission costs.
We introduce a "divide-and-share" paradigm that breaks the barriers of low-rank decomposition across matrix dimensions, modules, and layers.
VB-LoRA achieves extreme parameter efficiency while maintaining comparable or better performance compared to state-of-the-art PEFT methods.
arXiv Detail & Related papers (2024-05-24T03:24:34Z) - Improving LoRA in Privacy-preserving Federated Learning [44.47315926976059]
Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-efficient fine-tuning (PEFT) methods on pre-trained language models.
This paper proposes an efficient and effective version of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges.
arXiv Detail & Related papers (2024-03-18T23:20:08Z) - Run LoRA Run: Faster and Lighter LoRA Implementations [50.347242693025336]
LoRA is a technique that reduces the number of trainable parameters in a neural network by introducing low-rank adapters to linear layers.
This paper presents the RunLoRA framework for efficient implementations of LoRA.
Experiments show up to 28% speedup on language modeling networks.
arXiv Detail & Related papers (2023-12-06T10:54:34Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.