論文の概要: Multi-Task Learning for Features Extraction in Financial Annual Reports
- arxiv url: http://arxiv.org/abs/2404.05281v1
- Date: Mon, 8 Apr 2024 08:13:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 15:04:06.781224
- Title: Multi-Task Learning for Features Extraction in Financial Annual Reports
- Title(参考訳): 財務年度報告における特徴抽出のためのマルチタスク学習
- Authors: Syrielle Montariol, Matej Martinc, Andraž Pelicon, Senja Pollak, Boshko Koloski, Igor Lončarski, Aljoša Valentinčič,
- Abstract要約: 我々は、財務テキスト分類に様々なマルチタスク学習手法を用いる。
我々は,金銭的感情,客観性,前向きな文予測,ESGコンテンツ検出に重点を置いている。
FTSE350企業の年次報告からテキストの特徴を抽出し,ESG定量スコアとそれらの特徴との関係について検討する。
- 参考スコア(独自算出の注目度): 6.442186704634672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For assessing various performance indicators of companies, the focus is shifting from strictly financial (quantitative) publicly disclosed information to qualitative (textual) information. This textual data can provide valuable weak signals, for example through stylistic features, which can complement the quantitative data on financial performance or on Environmental, Social and Governance (ESG) criteria. In this work, we use various multi-task learning methods for financial text classification with the focus on financial sentiment, objectivity, forward-looking sentence prediction and ESG-content detection. We propose different methods to combine the information extracted from training jointly on different tasks; our best-performing method highlights the positive effect of explicitly adding auxiliary task predictions as features for the final target task during the multi-task training. Next, we use these classifiers to extract textual features from annual reports of FTSE350 companies and investigate the link between ESG quantitative scores and these features.
- Abstract(参考訳): 企業のさまざまなパフォーマンス指標を評価する上で、焦点は厳格に財務的な(質的な)公開情報から質的な(テキスト的な)情報へとシフトしている。
このテキストデータは、例えば、財務パフォーマンスや環境、社会、ガバナンス(ESG)の基準に関する定量的データを補完するスタイリスティックな特徴を通じて、貴重な弱信号を提供することができる。
本研究では、財務感情、客観性、前向き文予測、ESGコンテンツ検出に焦点をあてて、財務テキスト分類に様々なマルチタスク学習手法を用いる。
提案手法は,複数タスクの学習において,最終目標タスクの特徴として,補助的タスク予測を明示的に付加することによる肯定的な効果を強調した。
次に、これらの分類器を用いて、FTSE350企業の年次報告からテキストの特徴を抽出し、ESG定量スコアとそれらの特徴との関係について検討する。
関連論文リスト
- Active Prompt Learning with Vision-Language Model Priors [9.173468790066956]
視覚言語モデルの事前学習画像とテキストエンコーダを利用するクラス誘導クラスタリングを提案する。
適応型クラスワイドしきい値に基づく予算削減型選択クエリを提案する。
論文 参考訳(メタデータ) (2024-11-23T02:34:33Z) - Contrastive Learning of Asset Embeddings from Financial Time Series [8.595725772518332]
金融時系列データから資産埋め込みを生成するための,新しいコントラスト学習フレームワークを提案する。
提案手法は,多くのサブウインドウに対するアセットリターンの類似性を利用して,情報的正および負のサンプルを生成する。
実世界のデータセットに関する実験は、ベンチマーク業界分類とポートフォリオ最適化タスクにおける学習した資産埋め込みの有効性を実証している。
論文 参考訳(メタデータ) (2024-07-26T10:26:44Z) - Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
本研究では,人間のアノテータと大規模言語モデルを統合する新しい手法を提案する。
提案フレームワークは, モデルの不確実性レベルに応じて, 人間のアノテーションとLLMの出力を統合する。
実験結果から, モデル精度の維持・改善を図りながら, データアノテーションに関連するコストを大幅に削減した。
論文 参考訳(メタデータ) (2024-06-17T21:45:48Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
マルチタスク学習(MTL)は、複数の関連するタスクを共同で学習し、共有表現空間から恩恵を受けるフレームワークである。
MTLは、ほとんど重複しない、あるいは重複しないアノテーションで分類タスクで成功することを示す。
本稿では,分散マッチングによるタスク間の知識交換を可能にする新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-02T14:18:11Z) - Mastering the Task of Open Information Extraction with Large Language
Models and Consistent Reasoning Environment [52.592199835286394]
オープン情報抽出(OIE)は、自然文から客観的な構造化された知識を抽出することを目的としている。
大規模言語モデル(LLM)は、テキスト内学習能力に優れています。
論文 参考訳(メタデータ) (2023-10-16T17:11:42Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
本稿では,オープンソースの大規模言語モデルに対して,インストラクションチューニングパラダイムに固有のアプローチを導入する。
私たちは、オープンソースのモデルの相互運用性に乗じて、シームレスで透過的な統合を確保します。
本稿では,エンドツーエンドのトレーニングとテストのためのベンチマーク手法を提案し,費用対効果を生かした。
論文 参考訳(メタデータ) (2023-10-07T12:52:58Z) - OverPrompt: Enhancing ChatGPT through Efficient In-Context Learning [49.38867353135258]
複数のタスク入力を処理するために,LLMのコンテキスト内学習機能を活用したOverPromptを提案する。
本実験により,OverPromptはタスク性能を著しく損なうことなく,コスト効率の良いゼロショット分類を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-05-24T10:08:04Z) - Stock Embeddings: Learning Distributed Representations for Financial
Assets [11.67728795230542]
本稿では,過去のリターンデータのダイナミクスを利用する,ストック埋め込みのトレーニングのためのニューラルモデルを提案する。
当社のアプローチを詳細に説明し、金融分野で使用可能ないくつかの方法について論じる。
論文 参考訳(メタデータ) (2022-02-14T15:39:06Z) - Multitask Learning for Class-Imbalanced Discourse Classification [74.41900374452472]
マルチタスクアプローチは,現在のベンチマークで7%のマイクロf1コアを改善できることを示す。
また,NLPにおける資源不足問題に対処するための追加手法の比較検討を行った。
論文 参考訳(メタデータ) (2021-01-02T07:13:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。