論文の概要: Real-Time Sampling-based Online Planning for Drone Interception
- arxiv url: http://arxiv.org/abs/2502.14231v1
- Date: Thu, 20 Feb 2025 03:48:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:26:30.441247
- Title: Real-Time Sampling-based Online Planning for Drone Interception
- Title(参考訳): 実時間サンプリングによるドローン受信のためのオンラインプランニング
- Authors: Gilhyun Ryou, Lukas Lao Beyer, Sertac Karaman,
- Abstract要約: 本稿では,ニューラルネットワークの推論を利用して,時間を要する非線形軌道最適化を代替するサンプリングベースのオンライン計画アルゴリズムを提案する。
提案手法は、無人機が衝突を回避し、不完全な目標予測を処理しながら、目標を迎撃しなければならないドローン迎撃問題に適用される。
- 参考スコア(独自算出の注目度): 18.340019191662957
- License:
- Abstract: This paper studies high-speed online planning in dynamic environments. The problem requires finding time-optimal trajectories that conform to system dynamics, meeting computational constraints for real-time adaptation, and accounting for uncertainty from environmental changes. To address these challenges, we propose a sampling-based online planning algorithm that leverages neural network inference to replace time-consuming nonlinear trajectory optimization, enabling rapid exploration of multiple trajectory options under uncertainty. The proposed method is applied to the drone interception problem, where a defense drone must intercept a target while avoiding collisions and handling imperfect target predictions. The algorithm efficiently generates trajectories toward multiple potential target drone positions in parallel. It then assesses trajectory reachability by comparing traversal times with the target drone's predicted arrival time, ultimately selecting the minimum-time reachable trajectory. Through extensive validation in both simulated and real-world environments, we demonstrate our method's capability for high-rate online planning and its adaptability to unpredictable movements in unstructured settings.
- Abstract(参考訳): 本稿では,動的環境における高速オンラインプランニングについて検討する。
この問題は、システム力学に適合する時間最適軌道を見つけること、リアルタイム適応のための計算制約を満たすこと、環境変化の不確実性を考慮することが必要である。
これらの課題に対処するために、ニューラルネットワークの推論を利用して、時間を要する非線形軌道最適化を置き換えるサンプリングベースのオンライン計画アルゴリズムを提案し、不確実性の下で複数の軌道オプションの迅速な探索を可能にする。
提案手法は、無人機が衝突を回避し、不完全な目標予測を処理しながら、目標を迎撃しなければならないドローン迎撃問題に適用される。
このアルゴリズムは、複数の潜在的ドローン位置に対する軌道を並列に効率的に生成する。
次に、走行時間と目標ドローンの到着予定時刻を比較して軌道到達可能性を評価し、最終的に最小到達可能な軌道を選択する。
シミュレーション環境と実環境環境の両方における広範囲な検証を通じて,本手法の高速オンライン計画能力と非構造化環境における予測不可能な動作への適応性を示す。
関連論文リスト
- Trajectory Manifold Optimization for Fast and Adaptive Kinodynamic Motion Planning [5.982922468400902]
システムが動的に変化する環境に適応するためには、高速なキノダイナミックな運動計画が不可欠である。
本稿では,新しいニューラルネットワークモデル,その微分可能な運動マニフォールドプリミティブ(DMMP)と実践的なトレーニング戦略を提案する。
任意の目標位置への動的投球を行う7-DoFロボットアームを用いた実験により,提案手法が計画速度,タスク成功,制約満足度といった既存手法を超えることを示した。
論文 参考訳(メタデータ) (2024-10-16T03:29:33Z) - Biologically Inspired Swarm Dynamic Target Tracking and Obstacle Avoidance [0.0]
本研究では、軍用分散ドローン群を用いた動的目標追跡のためのAI駆動飛行コンピュータを提案する。
コントローラはファジィインタフェース、素早い適応、予測能力、マルチエージェント問題解決を可能にするニューラルネットワークを統合する。
論文 参考訳(メタデータ) (2024-10-15T03:47:09Z) - Residual Chain Prediction for Autonomous Driving Path Planning [5.139918355140954]
残留連鎖損失は損失計算過程を動的に調整し、予測経路点の時間依存性と精度を高める。
我々の研究は、自動運転車の計画コンポーネントに革命をもたらすために、Residual Chain Lossの可能性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-04-08T11:43:40Z) - Learning-Initialized Trajectory Planning in Unknown Environments [4.2960463890487555]
未知の環境での自律飛行の計画には、空間軌道と時間軌道の両方を正確に計画する必要がある。
本稿ではニューラルdトラジェクトリ・プランナーを用いて最適化を導く新しい手法を提案する。
遅延計画に対する耐性を持って、堅牢なオンラインリプランニングをサポートするフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-19T15:07:26Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - DDPEN: Trajectory Optimisation With Sub Goal Generation Model [70.36888514074022]
本稿では,エスケープネットワークを用いた微分動的プログラミング(DDPEN)を提案する。
本稿では,環境の入力マップとして,所望の位置とともにコストマップの形で利用する深層モデルを提案する。
このモデルは、目標に導く可能性のある将来の方向を生成し、リアルタイムに実行可能なローカルなミニマを避ける。
論文 参考訳(メタデータ) (2023-01-18T11:02:06Z) - Time-Optimal Planning for Quadrotor Waypoint Flight [50.016821506107455]
立方体の作動限界における時間-最適軌道の計画は未解決の問題である。
四重項のアクチュエータポテンシャルをフル活用する解を提案する。
我々は、世界最大規模のモーションキャプチャーシステムにおいて、実世界の飛行における我々の方法を検証する。
論文 参考訳(メタデータ) (2021-08-10T09:26:43Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Autonomous Drone Racing with Deep Reinforcement Learning [39.757652701917166]
ドローンレースのような多くのロボットタスクにおいて、ゴールはできるだけ速くコースポイントを移動することである。
重要な課題は、事前に通過するウェイポイントの完全な知識を想定して解決される最小時間軌道を計画することです。
本研究では,クワッドロータの最小時間軌道生成法を提案する。
論文 参考訳(メタデータ) (2021-03-15T18:05:49Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
本稿では,モデル予測制御(MPC)の定式化を拡張したオンライン経路計画アーキテクチャを提案する。
我々のアルゴリズムは、状態推定の共分散を推論するリカレントニューラルネットワーク(RNN)とオブジェクト検出パイプラインを組み合わせる。
本手法のロバスト性は, 複雑な四足歩行ロボットの力学で検証され, ほとんどのロボットプラットフォームに適用可能である。
論文 参考訳(メタデータ) (2020-07-28T07:34:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。