Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods
- URL: http://arxiv.org/abs/2404.05746v2
- Date: Fri, 30 Aug 2024 21:51:31 GMT
- Title: Causality for Earth Science -- A Review on Time-series and Spatiotemporal Causality Methods
- Authors: Sahara Ali, Uzma Hasan, Xingyan Li, Omar Faruque, Akila Sampath, Yiyi Huang, Md Osman Gani, Jianwu Wang,
- Abstract summary: The paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques.
The paper elicits the state-of-the-art methods introduced for time-series andtemporal causal analysis along with their strengths and limitations.
- Score: 2.790669554650619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This survey paper covers the breadth and depth of time-series and spatiotemporal causality methods, and their applications in Earth Science. More specifically, the paper presents an overview of causal discovery and causal inference, explains the underlying causal assumptions, and enlists evaluation techniques and key terminologies of the domain area. The paper elicits the various state-of-the-art methods introduced for time-series and spatiotemporal causal analysis along with their strengths and limitations. The paper further describes the existing applications of several methods for answering specific Earth Science questions such as extreme weather events, sea level rise, teleconnections etc. This survey paper can serve as a primer for Data Science researchers interested in data-driven causal study as we share a list of resources, such as Earth Science datasets (synthetic, simulated and observational data) and open source tools for causal analysis. It will equally benefit the Earth Science community interested in taking an AI-driven approach to study the causality of different dynamic and thermodynamic processes as we present the open challenges and opportunities in performing causality-based Earth Science study.
Related papers
- Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
This paper looks at the causal inference task of treatment effect estimation, where the outcome of interest is recorded in high-dimensional observations.
We compare 6 480 models fine-tuned from state-of-the-art visual backbones, and find that the sampling and modeling choices significantly affect the accuracy of the causal estimate.
Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones.
arXiv Detail & Related papers (2024-05-27T13:26:34Z) - Quantitative causality, causality-guided scientific discovery, and
causal machine learning [0.23020018305241333]
This note provides a brief review of the decade-long effort to establish a rigorous formalism of causality analysis.
It includes a list of major theoretical results, a sketch of the causal deep learning framework, and some representative real-world applications in geoscience.
arXiv Detail & Related papers (2024-02-20T23:38:46Z) - Large Models for Time Series and Spatio-Temporal Data: A Survey and
Outlook [95.32949323258251]
Temporal data, notably time series andtemporal-temporal data, are prevalent in real-world applications.
Recent advances in large language and other foundational models have spurred increased use in time series andtemporal data mining.
arXiv Detail & Related papers (2023-10-16T09:06:00Z) - A Diachronic Analysis of Paradigm Shifts in NLP Research: When, How, and
Why? [84.46288849132634]
We propose a systematic framework for analyzing the evolution of research topics in a scientific field using causal discovery and inference techniques.
We define three variables to encompass diverse facets of the evolution of research topics within NLP.
We utilize a causal discovery algorithm to unveil the causal connections among these variables using observational data.
arXiv Detail & Related papers (2023-05-22T11:08:00Z) - Discovering Causal Relations and Equations from Data [23.802778299505288]
This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics.
We provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies.
Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.
arXiv Detail & Related papers (2023-05-21T19:22:50Z) - Robust Causality and False Attribution in Data-Driven Earth Science
Discoveries [0.3503794925747607]
Causal and attribution studies are essential for earth scientific discoveries and informing climate, ecology, and water policies.
Here we show that transfer entropy-based causal graphs can be spurious even when augmented with statistical significance.
We develop a subsample-based ensemble approach for robust causality analysis.
arXiv Detail & Related papers (2022-09-26T10:45:48Z) - A Survey on Spatial and Spatiotemporal Prediction Methods [4.353444564058085]
This paper provides a systematic review on principles and methods in spatialtemporal prediction.
We provide a taxonomy of methods categorized by the key challenge they address.
arXiv Detail & Related papers (2020-12-24T18:17:35Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.