Implicit Assimilation of Sparse In Situ Data for Dense & Global Storm Surge Forecasting
- URL: http://arxiv.org/abs/2404.05758v1
- Date: Fri, 5 Apr 2024 21:28:56 GMT
- Title: Implicit Assimilation of Sparse In Situ Data for Dense & Global Storm Surge Forecasting
- Authors: Patrick Ebel, Brandon Victor, Peter Naylor, Gabriele Meoni, Federico Serva, Rochelle Schneider,
- Abstract summary: We show that neural networks can implicitly assimilate sparse in situ tide gauge data with coarse ocean state reanalysis to forecast storm surges.
Other than prior work limited to known gauges, our approach extends to ungauged sites, paving the way for global storm surge forecasting.
- Score: 3.052088487918602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hurricanes and coastal floods are among the most disastrous natural hazards. Both are intimately related to storm surges, as their causes and effects, respectively. However, the short-term forecasting of storm surges has proven challenging, especially when targeting previously unseen locations or sites without tidal gauges. Furthermore, recent work improved short and medium-term weather forecasting but the handling of raw unassimilated data remains non-trivial. In this paper, we tackle both challenges and demonstrate that neural networks can implicitly assimilate sparse in situ tide gauge data with coarse ocean state reanalysis in order to forecast storm surges. We curate a global dataset to learn and validate the dense prediction of storm surges, building on preceding efforts. Other than prior work limited to known gauges, our approach extends to ungauged sites, paving the way for global storm surge forecasting.
Related papers
- Mapping Global Floods with 10 Years of Satellite Radar Data [0.0]
We introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery.
We create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage.
We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya.
arXiv Detail & Related papers (2024-11-03T02:44:32Z) - Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting [7.4807361562214405]
Floods are among the most common and devastating natural hazards.
Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events.
There is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent.
arXiv Detail & Related papers (2024-09-27T09:51:25Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
We design a conceptual fine-grained causal model named TBN Granger Causality.
Second, we propose an end-to-end deep generative model called TacSas, which discovers TBN Granger Causality in a generative manner.
We test TacSas on climate benchmark ERA5 for climate forecasting and the extreme weather benchmark of NOAA for extreme weather alerts.
arXiv Detail & Related papers (2024-08-08T06:47:21Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
We deal with air quality observations in a city-wide network of ground monitoring stations.
We propose a conditioning block that embeds past and future covariates into the current observations.
We find that conditioning on future weather information has a greater impact than considering past traffic conditions.
arXiv Detail & Related papers (2024-04-08T09:13:16Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Pedestrian Trajectory Forecasting Using Deep Ensembles Under Sensing
Uncertainty [125.41260574344933]
We consider an encoder-decoder based deep ensemble network for capturing both perception and predictive uncertainty simultaneously.
Overall, deep ensembles provided more robust predictions and the consideration of upstream uncertainty further increased the estimation accuracy for the model.
arXiv Detail & Related papers (2023-05-26T04:27:48Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - A Framework for Flexible Peak Storm Surge Prediction [2.362412515574206]
Storm surge is a major natural hazard in coastal regions, responsible for significant property damage and loss of life.
We develop a novel surrogate model for peak storm surge prediction based on a multi-stage approach.
We demonstrate our modeling framework on two study areas: the Texas coast and the northern portion of the Alaskan coast.
arXiv Detail & Related papers (2022-04-27T20:02:25Z) - Accurate and Clear Precipitation Nowcasting with Consecutive Attention
and Rain-map Discrimination [11.686939430992966]
We propose a new deep learning model for precipitation nowcasting that includes both the discrimination and attention techniques.
The model is examined on a newly-built benchmark dataset that contains both radar data and actual rain data.
arXiv Detail & Related papers (2021-02-16T14:22:54Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - Prediction of Bayesian Intervals for Tropical Storms [1.7132914341329848]
Tropical storms are capable of causing severe damage, so accurately predicting their trajectories can bring significant benefits to cities and lives.
We have developed improved methods and generalized the approach to predict Bayesian intervals in addition to simple point estimates.
Our results show how neural network dropout values affect predictions and intervals.
arXiv Detail & Related papers (2020-03-10T22:31:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.