Mapping Global Floods with 10 Years of Satellite Radar Data
- URL: http://arxiv.org/abs/2411.01411v1
- Date: Sun, 03 Nov 2024 02:44:32 GMT
- Title: Mapping Global Floods with 10 Years of Satellite Radar Data
- Authors: Amit Misra, Kevin White, Simone Fobi Nsutezo, William Straka, Juan Lavista,
- Abstract summary: We introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery.
We create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage.
We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya.
- Score: 0.0
- License:
- Abstract: Floods cause extensive global damage annually, making effective monitoring essential. While satellite observations have proven invaluable for flood detection and tracking, comprehensive global flood datasets spanning extended time periods remain scarce. In this study, we introduce a novel deep learning flood detection model that leverages the cloud-penetrating capabilities of Sentinel-1 Synthetic Aperture Radar (SAR) satellite imagery, enabling consistent flood extent mapping in any weather condition. By applying this model to nearly 10 years of SAR data, we create a unique, longitudinal global flood extent dataset with predictions unaffected by cloud coverage, offering comprehensive and consistent insights into historically flood-prone areas over the past decade. We use our model predictions to identify historically flood-prone areas in Ethiopia and demonstrate real-time disaster response capabilities during the May 2024 floods in Kenya. Additionally, our longitudinal analysis reveals potential increasing trends in global flood extent over time, although further validation is required to explore links to climate change. To maximize impact, we provide public access to both our model predictions and a code repository, empowering researchers and practitioners worldwide to advance flood monitoring and enhance disaster response strategies.
Related papers
- Off to new Shores: A Dataset & Benchmark for (near-)coastal Flood Inundation Forecasting [7.4807361562214405]
Floods are among the most common and devastating natural hazards.
Recent progress in weather prediction and spaceborne flood mapping demonstrated the feasibility of anticipating extreme events.
There is a critical lack of datasets and benchmarks to enable the direct forecasting of flood extent.
arXiv Detail & Related papers (2024-09-27T09:51:25Z) - UrbanSARFloods: Sentinel-1 SLC-Based Benchmark Dataset for Urban and Open-Area Flood Mapping [24.857739769719778]
UrbanSARFloods is a dataset featuring pre-processed Sentinel-1 intensity data and interferometric coherence imagery acquired before and during flood events.
It contains 8,879 $512times 512$ chips covering 807,500 $km2$ across 20 land cover classes and 5, spanning 18 flood events.
We used UrbanSARFloods to benchmark existing state-of-the-art convolutional neural networks (CNNs) for segmenting open and urban flood areas.
arXiv Detail & Related papers (2024-06-06T14:28:43Z) - Implicit Assimilation of Sparse In Situ Data for Dense & Global Storm Surge Forecasting [3.052088487918602]
We show that neural networks can implicitly assimilate sparse in situ tide gauge data with coarse ocean state reanalysis to forecast storm surges.
Other than prior work limited to known gauges, our approach extends to ungauged sites, paving the way for global storm surge forecasting.
arXiv Detail & Related papers (2024-04-05T21:28:56Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - AI Increases Global Access to Reliable Flood Forecasts [6.498815455353096]
Floods are one of the most common natural disasters, with a disproportionate impact in developing countries that often lack dense streamflow gauge networks.
Using AI, we achieve reliability in predicting extreme riverine events in ungauged watersheds at up to a 5-day lead time.
This work highlights a need for increasing the availability of hydrological data to continue to improve global access to reliable flood warnings.
arXiv Detail & Related papers (2023-07-30T01:49:21Z) - Inferring the past: a combined CNN-LSTM deep learning framework to fuse
satellites for historical inundation mapping [3.753635296366263]
We develop a combined CNN--LSTM deep learning framework to fuse Sentinel-1 derived fractional flooded area with MODIS data in order to infer historical floods over Bangladesh.
The model is applied to historical MODIS data to infer the past 20 years of inundation extents over Bangladesh and compared to a thresholding algorithm and a physical model.
arXiv Detail & Related papers (2023-05-01T03:11:42Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Physics-informed GANs for Coastal Flood Visualization [65.54626149826066]
We create a deep learning pipeline that generates visual satellite images of current and future coastal flooding.
By evaluating the imagery relative to physics-based flood maps, we find that our proposed framework outperforms baseline models in both physical-consistency and photorealism.
While this work focused on the visualization of coastal floods, we envision the creation of a global visualization of how climate change will shape our earth.
arXiv Detail & Related papers (2020-10-16T02:15:34Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.