The Overlap Gap Property limits limit swapping in QAOA
- URL: http://arxiv.org/abs/2404.06087v3
- Date: Mon, 19 Aug 2024 11:44:22 GMT
- Title: The Overlap Gap Property limits limit swapping in QAOA
- Authors: Mark Xin Hong Goh,
- Abstract summary: The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm designed for Combinatorial Optimization Problem (COP)
We show that even when sub-optimised, the performance of QAOA on spin glass is equal in performance to classical algorithms in solving the mean field spin glass problem.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimization Algorithm (QAOA) is a quantum algorithm designed for Combinatorial Optimization Problem (COP). We show that if a COP with an underlying Erd\"os--R\'enyi hypergraph exhibits the Overlap Gap Property (OGP), then a random regular hypergraph exhibits it as well. Given that Max-$q$-XORSAT on an Erd\"os--R\'enyi hypergraph is known to exhibit the OGP, and since the performance of QAOA for the pure $q$-spin model matches asymptotically for Max-$q$-XORSAT on large-girth regular hypergraph, we show that the average-case value obtained by QAOA for the pure $q$-spin model for even $q\ge 4$ is bounded away from optimality even when the algorithm runs indefinitely. This suggests that a necessary condition for the validity of limit swapping in QAOA is the absence of OGP in a given combinatorial optimization problem. Furthermore, the results suggests that even when sub-optimised, the performance of QAOA on spin glass is equal in performance to classical algorithms in solving the mean field spin glass problem providing further evidence that the conjecture of getting the exact solution under limit swapping for the Sherrington--Kirkpatrick model to be true.
Related papers
- Improved Recursive QAOA for Solving MAX-CUT on Bipartite Graphs [4.364124102844566]
We analytically prove the performance limitations of level-1 QAOA in solving the MAX-CUT problem on bipartite graphs.
We show through numerical results that solving the same problem using level-1 Recursive QAOA (RQAOA)
We propose a modified RQAOA that reduces the parameter regime optimized in the QAOA.
arXiv Detail & Related papers (2024-08-23T16:35:47Z) - Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Missing Puzzle Pieces in the Performance Landscape of the Quantum Approximate Optimization Algorithm [0.0]
We consider the maximum cut and maximum independent set problems on random regular graphs.
We calculate the energy densities achieved by QAOA for high regularities up to $d=100$.
We combine the QAOA analysis with state-of-the-art upper bounds on optimality for both problems.
arXiv Detail & Related papers (2024-06-20T18:00:02Z) - Solving boolean satisfiability problems with the quantum approximate
optimization algorithm [0.05076419064097732]
We study the ability of QAOA to solve hard constraint satisfaction problems, as opposed to quantum computing problems.
We develop analytic bounds on the average success probability of QAOA over random formulae at the satisfiability threshold.
We find that for around 14 ansatz layers, QAOA matches the scaling performance of the highest-performance classical solver.
arXiv Detail & Related papers (2022-08-14T20:39:48Z) - QAOA-in-QAOA: solving large-scale MaxCut problems on small quantum
machines [81.4597482536073]
Quantum approximate optimization algorithms (QAOAs) utilize the power of quantum machines and inherit the spirit of adiabatic evolution.
We propose QAOA-in-QAOA ($textQAOA2$) to solve arbitrary large-scale MaxCut problems using quantum machines.
Our method can be seamlessly embedded into other advanced strategies to enhance the capability of QAOAs in large-scale optimization problems.
arXiv Detail & Related papers (2022-05-24T03:49:10Z) - Performance and limitations of the QAOA at constant levels on large
sparse hypergraphs and spin glass models [15.857373057387669]
We prove concentration properties at any constant level (number of layers) on ensembles of random optimization problems in the infinite size limit.
Our analysis can be understood via a saddle-point approximation of a sum-over-paths integral.
We show that the performance of the QAOA at constant levels is bounded away from optimality for pure $q$-spin models when $qge 4$ and is even.
arXiv Detail & Related papers (2022-04-21T17:40:39Z) - Misspecified Gaussian Process Bandit Optimization [59.30399661155574]
Kernelized bandit algorithms have shown strong empirical and theoretical performance for this problem.
We introduce a emphmisspecified kernelized bandit setting where the unknown function can be $epsilon$--uniformly approximated by a function with a bounded norm in some Reproducing Kernel Hilbert Space (RKHS)
We show that our algorithm achieves optimal dependence on $epsilon$ with no prior knowledge of misspecification.
arXiv Detail & Related papers (2021-11-09T09:00:02Z) - Predicting parameters for the Quantum Approximate Optimization Algorithm
for MAX-CUT from the infinite-size limit [0.05076419064097732]
We present an explicit algorithm to evaluate the performance of QAOA on MAX-CUT applied to random Erdos-Renyi graphs of expected degree $d$.
This analysis yields an explicit mapping between QAOA parameters for MAX-CUT on Erdos-Renyi graphs, and the Sherrington-Kirkpatrick model.
arXiv Detail & Related papers (2021-10-20T17:58:53Z) - Solving correlation clustering with QAOA and a Rydberg qudit system: a
full-stack approach [94.37521840642141]
We study the correlation clustering problem using the quantum approximate optimization algorithm (QAOA) and qudits.
Specifically, we consider a neutral atom quantum computer and propose a full stack approach for correlation clustering.
We show the qudit implementation is superior to the qubit encoding as quantified by the gate count.
arXiv Detail & Related papers (2021-06-22T11:07:38Z) - Hybrid quantum-classical algorithms for approximate graph coloring [65.62256987706128]
We show how to apply the quantum approximate optimization algorithm (RQAOA) to MAX-$k$-CUT, the problem of finding an approximate $k$-vertex coloring of a graph.
We construct an efficient classical simulation algorithm which simulates level-$1$ QAOA and level-$1$ RQAOA for arbitrary graphs.
arXiv Detail & Related papers (2020-11-26T18:22:21Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.