論文の概要: NoiseNCA: Noisy Seed Improves Spatio-Temporal Continuity of Neural Cellular Automata
- arxiv url: http://arxiv.org/abs/2404.06279v3
- Date: Fri, 14 Jun 2024 11:48:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:42:49.663387
- Title: NoiseNCA: Noisy Seed Improves Spatio-Temporal Continuity of Neural Cellular Automata
- Title(参考訳): ノイズNCA:ニューラルセルオートマタの時空間連続性を改善するノイジー種子
- Authors: Ehsan Pajouheshgar, Yitao Xu, Sabine Süsstrunk,
- Abstract要約: NCAはセルオートマタの一種で、更新ルールはニューラルネットワークによってパラメータ化される。
既存のNAAモデルは、トレーニングの離散化に過度に適合する傾向があることを示す。
本研究では,一様雑音を初期条件とする解を提案する。
- 参考スコア(独自算出の注目度): 23.73063532045145
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Neural Cellular Automata (NCA) is a class of Cellular Automata where the update rule is parameterized by a neural network that can be trained using gradient descent. In this paper, we focus on NCA models used for texture synthesis, where the update rule is inspired by partial differential equations (PDEs) describing reaction-diffusion systems. To train the NCA model, the spatio-temporal domain is discretized, and Euler integration is used to numerically simulate the PDE. However, whether a trained NCA truly learns the continuous dynamic described by the corresponding PDE or merely overfits the discretization used in training remains an open question. We study NCA models at the limit where space-time discretization approaches continuity. We find that existing NCA models tend to overfit the training discretization, especially in the proximity of the initial condition, also called "seed". To address this, we propose a solution that utilizes uniform noise as the initial condition. We demonstrate the effectiveness of our approach in preserving the consistency of NCA dynamics across a wide range of spatio-temporal granularities. Our improved NCA model enables two new test-time interactions by allowing continuous control over the speed of pattern formation and the scale of the synthesized patterns. We demonstrate this new NCA feature in our interactive online demo. Our work reveals that NCA models can learn continuous dynamics and opens new venues for NCA research from a dynamical system's perspective.
- Abstract(参考訳): ニューラルセルオートマタ(Neural Cellular Automata、NCA)はセルオートマタの一種で、ニューラルネットワークによって更新ルールをパラメータ化して、勾配降下を用いてトレーニングすることができる。
本稿では, 反応拡散系を記述する偏微分方程式 (PDE) に着想を得て, テクスチャ合成に使用されるNAAモデルに着目した。
NCAモデルをトレーニングするために、時空間領域を離散化し、オイラー積分を用いてPDEを数値シミュレーションする。
しかし、訓練されたNAAが、対応するPDEによって記述される連続力学を真に学習するかどうか、あるいは単にトレーニングで使用される離散化を過度に適合させるだけなのかは、未解決の問題である。
時空離散化が連続性に近づく極限において, NCA モデルについて検討する。
既存のNAAモデルは、特に「シード」とも呼ばれる初期状態に近い場合、トレーニングの離散化に過度に適合する傾向にある。
そこで本研究では,一様雑音を初期条件とする解を提案する。
本研究では, NCA の動的一貫性を幅広い時空間的粒度にわたって維持する手法の有効性を実証する。
NCAモデルの改良により、パターン生成速度と合成パターンのスケールを連続的に制御し、2つの新しいテスト時間相互作用が可能となった。
インタラクティブなオンラインデモでは、この新しいNAA機能を実演しています。
我々の研究は、NAAモデルが連続力学を学習し、力学系の観点からNAA研究の新たな場を開くことを明らかにしている。
関連論文リスト
- Harnessing Neural Unit Dynamics for Effective and Scalable Class-Incremental Learning [38.09011520275557]
クラスインクリメンタルラーニング(Class-incremental Learning, CIL)は、古いクラスを忘れずに、非定常データストリームから新しいクラスを学ぶためのモデルをトレーニングすることを目的としている。
本稿では、ニューラルネットワークの動作をCILに適応させるニューラルネットワークユニットダイナミクスを調整し、新しい種類のコネクショナリストモデルを提案する。
論文 参考訳(メタデータ) (2024-06-04T15:47:03Z) - Emergent Dynamics in Neural Cellular Automata [23.73063532045145]
ニューラルセルラーオートマタアーキテクチャとトレーニングモデルの創発的ダイナミクスとの関係について検討する。
解析の結果,これらの変数間の相違と比例性は,NCA出力の創発的ダイナミクスと強い相関関係があることが判明した。
論文 参考訳(メタデータ) (2024-04-09T15:54:03Z) - Exploring Multiple Neighborhood Neural Cellular Automata (MNNCA) for
Enhanced Texture Learning [0.0]
細胞性オートマタ(CA)は、力学系をシミュレートする基礎となっている。
最近のイノベーションは、ディープラーニングの領域にニューラルセルオートマタ(NCA)をもたらした。
NCA は NCA を勾配降下によって訓練し、特定の形状に進化させ、テクスチャを生成し、スワーミングのような振る舞いを模倣することができる。
本研究は,複数の地区を組み込んだNCAフレームワークの強化と,シード状態に対する構造ノイズの導入について検討する。
論文 参考訳(メタデータ) (2023-10-27T15:16:19Z) - Learning spatio-temporal patterns with Neural Cellular Automata [0.0]
我々はNAAを訓練し、時系列画像とPDE軌道から複雑な力学を学ぶ。
我々はNCAを拡張し、同じシステム内の過渡構造と安定構造の両方を捕捉する。
任意のダイナミクスを学べることによって、NAAはデータ駆動モデリングフレームワークとして大きな可能性を秘めている。
論文 参考訳(メタデータ) (2023-10-23T11:16:32Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
多くのNNアプローチは、支配的PDEと物質モデルの両方を暗黙的にモデル化するエンドツーエンドモデルを学ぶ。
PDEの管理はよく知られており、学習よりも明示的に実施されるべきである、と私たちは主張する。
そこで我々は,ネットワークアーキテクチャを利用したニューラル構成則(Neural Constitutive Laws,NCLaw)と呼ばれる新しいフレームワークを導入する。
論文 参考訳(メタデータ) (2023-04-27T17:42:24Z) - Neural Delay Differential Equations: System Reconstruction and Image
Classification [14.59919398960571]
我々はニューラル遅延微分方程式 (Neural Delay Differential Equations, NDDEs) という,遅延を伴う連続深度ニューラルネットワークの新しいクラスを提案する。
NODE と比較して、NDDE はより強い非線形表現能力を持つ。
我々は、合成されたデータだけでなく、よく知られた画像データセットであるCIFAR10に対しても、損失の低減と精度の向上を実現している。
論文 参考訳(メタデータ) (2023-04-11T16:09:28Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。