MetaCheckGPT -- A Multi-task Hallucination Detector Using LLM Uncertainty and Meta-models
- URL: http://arxiv.org/abs/2404.06948v2
- Date: Thu, 11 Apr 2024 15:39:44 GMT
- Title: MetaCheckGPT -- A Multi-task Hallucination Detector Using LLM Uncertainty and Meta-models
- Authors: Rahul Mehta, Andrew Hoblitzell, Jack O'Keefe, Hyeju Jang, Vasudeva Varma,
- Abstract summary: This paper describes our winning solution ranked 1st and 2nd in the 2 sub-tasks of model agnostic and model aware tracks respectively.
We propose a meta-regressor framework of LLMs for model evaluation and integration that achieves the highest scores on the leaderboard.
- Score: 8.322071110929338
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Hallucinations in large language models (LLMs) have recently become a significant problem. A recent effort in this direction is a shared task at Semeval 2024 Task 6, SHROOM, a Shared-task on Hallucinations and Related Observable Overgeneration Mistakes. This paper describes our winning solution ranked 1st and 2nd in the 2 sub-tasks of model agnostic and model aware tracks respectively. We propose a meta-regressor framework of LLMs for model evaluation and integration that achieves the highest scores on the leaderboard. We also experiment with various transformer-based models and black box methods like ChatGPT, Vectara, and others. In addition, we perform an error analysis comparing GPT4 against our best model which shows the limitations of the former.
Related papers
- VHELM: A Holistic Evaluation of Vision Language Models [75.88987277686914]
We present the Holistic Evaluation of Vision Language Models (VHELM)
VHELM aggregates various datasets to cover one or more of the 9 aspects: visual perception, knowledge, reasoning, bias, fairness, multilinguality, robustness, toxicity, and safety.
Our framework is designed to be lightweight and automatic so that evaluation runs are cheap and fast.
arXiv Detail & Related papers (2024-10-09T17:46:34Z) - Probing the Robustness of Theory of Mind in Large Language Models [6.7932860553262415]
We introduce a novel dataset of 68 tasks for probing ToM in LLMs.
We evaluate the ToM performance of four SotA open source LLMs on our dataset and the dataset introduced by (Kosinski, 2023)
We find a consistent tendency in all tested LLMs to perform poorly on tasks that require the realization that an agent has knowledge of automatic state changes in its environment.
arXiv Detail & Related papers (2024-10-08T18:13:27Z) - DeTra: A Unified Model for Object Detection and Trajectory Forecasting [68.85128937305697]
Our approach formulates the union of the two tasks as a trajectory refinement problem.
To tackle this unified task, we design a refinement transformer that infers the presence, pose, and multi-modal future behaviors of objects.
In our experiments, we observe that ourmodel outperforms the state-of-the-art on Argoverse 2 Sensor and Open dataset.
arXiv Detail & Related papers (2024-06-06T18:12:04Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
We introduce MT-Eval, a comprehensive benchmark designed to evaluate multi-turn conversational abilities.
By analyzing human-LLM conversations, we categorize interaction patterns into four types: recollection, expansion, refinement, and follow-up.
Our evaluation of 11 well-known LLMs shows that while closed-source models generally surpass open-source ones, certain open-source models exceed GPT-3.5-Turbo in specific tasks.
arXiv Detail & Related papers (2024-01-30T04:50:28Z) - Mementos: A Comprehensive Benchmark for Multimodal Large Language Model
Reasoning over Image Sequences [80.54979242912944]
This paper introduces Mementos, a new benchmark designed to assess MLLMs' sequential image reasoning abilities.
We find that MLLMs struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects.
arXiv Detail & Related papers (2024-01-19T07:10:13Z) - Detecting and Preventing Hallucinations in Large Vision Language Models [4.7264116948935975]
M-HalDetect is the first multi-modal hallucination detection dataset for detailed image descriptions.
We train fine-grained multi-modal reward models from InstructBLIP and evaluate their effectiveness with best-of-n rejection sampling.
We find that our reward model generalizes to other multi-modal models, reducing hallucinations in LLaVA and mPLUG-OWL by 15% and 57% respectively.
arXiv Detail & Related papers (2023-08-11T21:35:20Z) - Mitigating Hallucination in Large Multi-Modal Models via Robust Instruction Tuning [92.85265959892115]
This paper introduces the first large and diverse visual instruction tuning dataset, named Large-scale Robust Visual (LRV)-Instruction.
Our dataset comprises 400k visual instructions generated by GPT4, covering 16 vision-and-language tasks with open-ended instructions and answers.
To efficiently measure the hallucination generated by LMMs, we propose GPT4-Assisted Visual Instruction Evaluation (GAVIE), a stable approach to evaluate visual instruction tuning like human experts.
arXiv Detail & Related papers (2023-06-26T10:26:33Z) - Scalable Performance Analysis for Vision-Language Models [26.45624201546282]
Joint vision-language models have shown great performance over a diverse set of tasks.
Our paper introduces a more scalable solution that relies on already annotated benchmarks.
We confirm previous findings that CLIP behaves like a bag of words model and performs better with nouns and verbs.
arXiv Detail & Related papers (2023-05-30T06:40:08Z) - MM-SHAP: A Performance-agnostic Metric for Measuring Multimodal
Contributions in Vision and Language Models & Tasks [20.902155496422417]
Vision and language models exploit unrobust indicators in individual modalities instead of focusing on relevant information in each modality.
We propose MM-SHAP, a performance-agnostic multimodality score based on Shapley values.
arXiv Detail & Related papers (2022-12-15T21:41:06Z) - Negative Inner-Loop Learning Rates Learn Universal Features [0.0]
We study the effect that a learned learning-rate has on the per-task feature representations in Meta-SGD.
Negative learning rates push features away from task-specific features and towards task-agnostic features.
This confirms the hypothesis that Meta-SGD's negative learning rates cause the model to learn task-agnostic features rather than simply adapt to task specific features.
arXiv Detail & Related papers (2022-03-18T22:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.