論文の概要: Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation
- arxiv url: http://arxiv.org/abs/2404.07053v3
- Date: Mon, 21 Jul 2025 08:12:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 12:28:43.099725
- Title: Meta4XNLI: A Crosslingual Parallel Corpus for Metaphor Detection and Interpretation
- Title(参考訳): Meta4XNLI: メタファー検出・解釈のための多言語並列コーパス
- Authors: Elisa Sanchez-Bayona, Rodrigo Agerri,
- Abstract要約: 本稿ではメタ4XNLIについて紹介する。メタ4XNLIは自然言語推論(NLI)のための最初の並列データセットである。
その結果,微調整エンコーダはメタファー検出においてデコーダのみのLLMよりも優れていた。
また,言語間のメタファーの保存や喪失において,翻訳が重要な役割を担っていることも確認した。
- 参考スコア(独自算出の注目度): 6.0158981171030685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Metaphors are a ubiquitous but often overlooked part of everyday language. As a complex cognitive-linguistic phenomenon, they provide a valuable means to evaluate whether language models can capture deeper aspects of meaning, including semantic, pragmatic, and cultural context. In this work, we present Meta4XNLI, the first parallel dataset for Natural Language Inference (NLI) newly annotated for metaphor detection and interpretation in both English and Spanish. Meta4XNLI facilitates the comparison of encoder- and decoder-based models in detecting and understanding metaphorical language in multilingual and cross-lingual settings. Our results show that fine-tuned encoders outperform decoders-only LLMs in metaphor detection. Metaphor interpretation is evaluated via the NLI framework with comparable performance of masked and autoregressive models, which notably decreases when the inference is affected by metaphorical language. Our study also finds that translation plays an important role in the preservation or loss of metaphors across languages, introducing shifts that might impact metaphor occurrence and model performance. These findings underscore the importance of resources like Meta4XNLI for advancing the analysis of the capabilities of language models and improving our understanding of metaphor processing across languages. Furthermore, the dataset offers previously unavailable opportunities to investigate metaphor interpretation, cross-lingual metaphor transferability, and the impact of translation on the development of multilingual annotated resources.
- Abstract(参考訳): メタファーはユビキタスであるが、日常言語では見落とされがちである。
複雑な認知言語学的現象として、言語モデルが意味論、実践的、文化的文脈を含むより深い意味の側面を捉えることができるかどうかを評価する貴重な手段を提供する。
本稿では,メタ4XNLIについて紹介する。メタ4XNLIは自然言語推論(NLI)のための最初の並列データセットであり,メタ4XNLIは英語とスペイン語の比喩検出と解釈のために新たに注釈付けされている。
Meta4XNLIは、多言語および言語間設定における比喩言語の検出と理解において、エンコーダとデコーダに基づくモデルの比較を容易にする。
その結果,微調整エンコーダはメタファー検出においてデコーダのみのLLMよりも優れていた。
メタファーの解釈は、暗黙的および自己回帰的モデルの同等の性能を持つNLIフレームワークを介して評価される。
また,言語間のメタファーの保存や喪失において翻訳が重要な役割を担っており,メタファーの発生やモデル性能に影響を及ぼす可能性のある変化が導入された。
これらの知見は、メタ4XNLIのようなリソースが言語モデルの能力解析を推進し、言語横断のメタファ処理の理解を深める上で重要であることを裏付けるものである。
さらに、このデータセットは、メタファの解釈、言語間メタファの転送可能性、多言語アノテートリソースの開発に対する翻訳の影響を調査する上で、これまで利用できなかった機会を提供する。
関連論文リスト
- Metaphor and Large Language Models: When Surface Features Matter More than Deep Understanding [6.0158981171030685]
本稿では,複数のデータセット,タスク,プロンプト構成にまたがるメタファ解釈において,LLM(Large Language Models)の能力を包括的に評価する。
推論とメタファアノテーションを備えた多種多様な公開データセットを用いて、広範な実験を行うことにより、これらの制限に対処する。
その結果,LLMの性能は比喩的内容よりも語彙的重複や文長などの特徴に影響されていることが示唆された。
論文 参考訳(メタデータ) (2025-07-21T08:09:11Z) - Cultural Bias Matters: A Cross-Cultural Benchmark Dataset and Sentiment-Enriched Model for Understanding Multimodal Metaphors [26.473849906627677]
中国語と英語のメタファーを横断的に研究するためのデータセットであるMultiMMを紹介する。
本稿では、感情埋め込みを統合し、文化的背景における比喩的理解を高めるベースラインモデルである感性強化メタファー検出(SEMD)を提案する。
論文 参考訳(メタデータ) (2025-06-08T04:02:50Z) - Towards Multimodal Metaphor Understanding: A Chinese Dataset and Model for Metaphor Mapping Identification [9.08615188602226]
我々は、特定のターゲットドメインとソースドメインのアノテーションを含む中国のマルチモーダルメタファー広告データセット(CM3D)を開発した。
我々は,これらのマッピングを識別するための認知過程をシミュレートする,CPMMIM (Chain-of-NLP) Prompting-based Metaphor Mapping Identification Model) を提案する。
論文 参考訳(メタデータ) (2025-01-05T04:15:03Z) - Understanding Cross-Lingual Alignment -- A Survey [52.572071017877704]
言語間アライメントは多言語言語モデルにおける言語間の表現の有意義な類似性である。
本研究は,言語間アライメントの向上,手法の分類,分野全体からの洞察の要約といった手法の文献を調査する。
論文 参考訳(メタデータ) (2024-04-09T11:39:53Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
図形言語は人間のコミュニケーションに浸透するが、NLPでは比較的過小評価されている。
Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili, Yorubaの7つの多様な言語に関するデータセットを作成しました。
我々のデータセットから,各言語は,同じ領域から派生した言語間で最も高い重なり合いを持つ,図形表現の文化的・地域的概念に依存していることが明らかとなった。
全ての言語は、事前学習データと微調整データの可用性を反映した性能の変化により、英語と比較して大きな欠陥がある。
論文 参考訳(メタデータ) (2023-05-25T15:30:31Z) - LMs stand their Ground: Investigating the Effect of Embodiment in
Figurative Language Interpretation by Language Models [0.0]
表現言語は、その解釈が従来の順序や意味から逸脱しているため、言語モデルの課題である。
しかし、人間がメタファーを理解し解釈するのは、メタファーを具現化したメタファーから導き出すことができるためである。
本研究は、比喩文の動作がより具体化されている場合に、より大きな言語モデルが比喩文の解釈にいかに優れているかを示す。
論文 参考訳(メタデータ) (2023-05-05T11:44:12Z) - Leveraging a New Spanish Corpus for Multilingual and Crosslingual
Metaphor Detection [5.9647924003148365]
この研究は、スペインで自然に出現するメタファで注釈付けされた最初のコーパスを示し、メタファ検出を行うシステムを開発するのに十分である。
提示されたデータセットであるCoMetaには、ニュース、政治談話、ウィキペディア、レビューなど、さまざまな分野のテキストが含まれている。
論文 参考訳(メタデータ) (2022-10-19T07:55:36Z) - Testing the Ability of Language Models to Interpret Figurative Language [69.59943454934799]
比喩的・比喩的な言語は言論において一般的である。
現代の言語モデルが非リテラルなフレーズをどの程度解釈できるかについては、未解決の疑問が残る。
ウィノグラードスタイルの非文字言語理解タスクであるFig-QAを紹介する。
論文 参考訳(メタデータ) (2022-04-26T23:42:22Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
固有プローブ構築のための新しい潜在変数定式化を提案する。
我々は、事前訓練された表現が言語間交互に絡み合ったモルフォシンタクスの概念を発達させる経験的証拠を見出した。
論文 参考訳(メタデータ) (2022-01-20T15:01:12Z) - On the Impact of Temporal Representations on Metaphor Detection [1.6959319157216468]
メタファー検出のための最先端のアプローチは、ニューラルネットワークに基づくシーケンシャルなメタファー分類器を使用して、リテラル(リテラル、またはコア)の意味と文脈的意味を比較する。
本研究では, 時間的, 静的な単語の埋め込みを, 意味の表現に用い, 詳細な探索分析によるメタファ検出課題について検討する。
その結果,異なる単語の埋め込みがメタファー検出タスクや時間的単語の埋め込みに影響を及ぼすことが示唆された。
論文 参考訳(メタデータ) (2021-11-05T08:43:21Z) - It's not Rocket Science : Interpreting Figurative Language in Narratives [48.84507467131819]
我々は2つの非構成的図形言語(イディオムとシミュラ)の解釈を研究する。
実験の結果、事前学習された言語モデルのみに基づくモデルは、これらのタスクにおいて人間よりもはるかにひどい性能を示すことがわかった。
また, 知識強化モデルを提案し, 具体的言語を解釈するための人的戦略を採用した。
論文 参考訳(メタデータ) (2021-08-31T21:46:35Z) - Interpreting Verbal Metaphors by Paraphrasing [12.750941606061877]
パラフレージング法が最先端のベースラインを著しく上回ることを示す。
また,本手法は,英語のメタファーを8言語に翻訳することで,機械翻訳システムの精度向上に役立つことを示す。
論文 参考訳(メタデータ) (2021-04-07T21:00:23Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z) - Translation Artifacts in Cross-lingual Transfer Learning [51.66536640084888]
機械翻訳は、既存の言語間モデルに顕著な影響を与える微妙なアーティファクトを導入することができることを示す。
自然言語の推論では、前提と仮説を独立に翻訳することで、それらの間の語彙的重複を減らすことができる。
また、XNLIでは、それぞれ4.3点と2.8点の翻訳とゼロショットのアプローチを改善している。
論文 参考訳(メタデータ) (2020-04-09T17:54:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。