Uncertainty-guided annotation enhances segmentation with the human-in-the-loop
- URL: http://arxiv.org/abs/2404.07208v1
- Date: Fri, 16 Feb 2024 16:41:15 GMT
- Title: Uncertainty-guided annotation enhances segmentation with the human-in-the-loop
- Authors: Nadieh Khalili, Joey Spronck, Francesco Ciompi, Jeroen van der Laak, Geert Litjens,
- Abstract summary: Uncertainty-Guided.
(UGA) introduces a human-in-the-loop approach, enabling AI to convey its uncertainties to clinicians.
UGA eases this interaction by quantifying uncertainty at the pixel level, thereby revealing the model's limitations.
To foster broader application and community contribution, we have made our code accessible.
- Score: 5.669636524329784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning algorithms, often critiqued for their 'black box' nature, traditionally fall short in providing the necessary transparency for trusted clinical use. This challenge is particularly evident when such models are deployed in local hospitals, encountering out-of-domain distributions due to varying imaging techniques and patient-specific pathologies. Yet, this limitation offers a unique avenue for continual learning. The Uncertainty-Guided Annotation (UGA) framework introduces a human-in-the-loop approach, enabling AI to convey its uncertainties to clinicians, effectively acting as an automated quality control mechanism. UGA eases this interaction by quantifying uncertainty at the pixel level, thereby revealing the model's limitations and opening the door for clinician-guided corrections. We evaluated UGA on the Camelyon dataset for lymph node metastasis segmentation which revealed that UGA improved the Dice coefficient (DC), from 0.66 to 0.76 by adding 5 patches, and further to 0.84 with 10 patches. To foster broader application and community contribution, we have made our code accessible at
Related papers
- FUTransUNet-GradCAM: A Hybrid Transformer-U-Net with Self-Attention and Explainable Visualizations for Foot Ulcer Segmentation [0.0]
Automated segmentation of diabetic foot ulcers (DFUs) plays a critical role in clinical diagnosis, therapeutic planning, and longitudinal wound monitoring.<n>Traditional convolutional neural networks (CNNs) provide strong localization capabilities but struggle to model long-range spatial dependencies.<n>We propose FUTransUNet, a hybrid architecture that integrates the global attention mechanism of Vision Transformers (ViTs) into the U-Net framework.
arXiv Detail & Related papers (2025-08-04T11:05:14Z) - Diffusion-based Counterfactual Augmentation: Towards Robust and Interpretable Knee Osteoarthritis Grading [7.748673766536236]
This paper proposes a novel framework, Diffusion-based Counterfactual Augmentation (DCA), which enhances model robustness and interpretability.<n>The framework effectively converts model uncertainty into a robust training signal, offering a promising pathway to developing more accurate and trustworthy automated diagnostic systems.
arXiv Detail & Related papers (2025-06-18T04:16:28Z) - Crane: Context-Guided Prompt Learning and Attention Refinement for Zero-Shot Anomaly Detections [50.343419243749054]
Anomaly Detection (AD) involves identifying deviations from normal data distributions.
We propose a novel approach that conditions the prompts of the text encoder based on image context extracted from the vision encoder.
Our method achieves state-of-the-art performance, improving performance by 2% to 29% across different metrics on 14 datasets.
arXiv Detail & Related papers (2025-04-15T10:42:25Z) - On the Convergence of DP-SGD with Adaptive Clipping [56.24689348875711]
Gradient Descent with gradient clipping is a powerful technique for enabling differentially private optimization.
This paper provides the first comprehensive convergence analysis of SGD with quantile clipping (QC-SGD)
We show how QC-SGD suffers from a bias problem similar to constant-threshold clipped SGD but can be mitigated through a carefully designed quantile and step size schedule.
arXiv Detail & Related papers (2024-12-27T20:29:47Z) - Deep Bayesian segmentation for colon polyps: Well-calibrated predictions in medical imaging [0.0]
We build different Bayesian neural network approaches to develop semantic segmentation of colorectal polyp images.
We found that these models not only provide state-of-the-art performance on the segmentation of this medical dataset but also, yield accurate uncertainty estimates.
arXiv Detail & Related papers (2024-07-23T16:13:27Z) - Deep learning automates Cobb angle measurement compared with multi-expert observers [3.7153471185088427]
The Cobb angle is a widely used scoliosis quantification method that measures the degree of curvature between the tilted vertebrae.
We have created fully automated software that precisely measures the Cobb angle and provides clear visualizations of these measurements.
This software integrates deep neural network-based spine region detection and segmentation, spine centerline identification, pinpointing the most significantly tilted vertebrae.
arXiv Detail & Related papers (2024-03-18T15:43:45Z) - Differentially Private SGD Without Clipping Bias: An Error-Feedback Approach [62.000948039914135]
Using Differentially Private Gradient Descent with Gradient Clipping (DPSGD-GC) to ensure Differential Privacy (DP) comes at the cost of model performance degradation.
We propose a new error-feedback (EF) DP algorithm as an alternative to DPSGD-GC.
We establish an algorithm-specific DP analysis for our proposed algorithm, providing privacy guarantees based on R'enyi DP.
arXiv Detail & Related papers (2023-11-24T17:56:44Z) - Robust and Generalisable Segmentation of Subtle Epilepsy-causing
Lesions: a Graph Convolutional Approach [1.180462901068842]
Focal cortical dysplasia (FCD) is a leading cause of drug-resistant epilepsy, which can be cured by surgery.
"Ground truth" manual lesion masks are therefore expensive, limited and have large inter-rater variability.
We propose to approach the problem as semantic segmentation using graph convolutional networks (GCN), which allows our model to learn spatial relationships between brain regions.
arXiv Detail & Related papers (2023-06-02T08:56:56Z) - Confidence-Driven Deep Learning Framework for Early Detection of Knee Osteoarthritis [8.193689534916988]
Knee Osteoarthritis (KOA) is a prevalent musculoskeletal disorder that severely impacts mobility and quality of life.
We propose a confidence-driven deep learning framework for early KOA detection, focusing on distinguishing KL-0 and KL-2 stages.
Experimental results demonstrate that the proposed framework achieves competitive accuracy, sensitivity, and specificity, comparable to those of expert radiologists.
arXiv Detail & Related papers (2023-03-23T11:57:50Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
We propose an uncertainty-guided dual-consistency learning network (UDC-Net) for semi-supervised COVID-19 lesion segmentation from CT images.
Our proposed UDC-Net improves the fully supervised method by 6.3% in Dice and outperforms other competitive semi-supervised approaches by significant margins.
arXiv Detail & Related papers (2021-04-07T16:23:35Z) - Information Bottleneck Attribution for Visual Explanations of Diagnosis
and Prognosis [8.325727554619325]
We introduce a robust visual explanation method to address this problem for medical applications.
Inspired by the information bottleneck concept, we mask the neural network representation with noise to find out important regions.
arXiv Detail & Related papers (2021-04-07T02:43:52Z) - Interpretable COVID-19 Chest X-Ray Classification via Orthogonality
Constraint [10.190872613479632]
We investigate the benefit of using Orthogonal Spheres (OS) constraint for classification of COVID-19 cases from chest X-ray images.
Previous studies have demonstrated significant benefits in applying such constraints to deep learning models.
Our approach achieves an improvement in accuracy of 1.6% and 4.8% for two- and three-class classification.
arXiv Detail & Related papers (2021-02-02T11:35:28Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.