Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation
- URL: http://arxiv.org/abs/2404.07219v2
- Date: Wed, 17 Apr 2024 15:10:32 GMT
- Title: Leave No One Behind: Online Self-Supervised Self-Distillation for Sequential Recommendation
- Authors: Shaowei Wei, Zhengwei Wu, Xin Li, Qintong Wu, Zhiqiang Zhang, Jun Zhou, Lihong Gu, Jinjie Gu,
- Abstract summary: Sequential recommendation methods play a pivotal role in modern recommendation systems.
Recent methods leverage contrastive learning to derive self-supervision signals.
We introduce a novel learning paradigm, named Online Self-Supervised Self-distillation for Sequential Recommendation.
- Score: 20.52842524024608
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequential recommendation methods play a pivotal role in modern recommendation systems. A key challenge lies in accurately modeling user preferences in the face of data sparsity. To tackle this challenge, recent methods leverage contrastive learning (CL) to derive self-supervision signals by maximizing the mutual information of two augmented views of the original user behavior sequence. Despite their effectiveness, CL-based methods encounter a limitation in fully exploiting self-supervision signals for users with limited behavior data, as users with extensive behaviors naturally offer more information. To address this problem, we introduce a novel learning paradigm, named Online Self-Supervised Self-distillation for Sequential Recommendation ($S^4$Rec), effectively bridging the gap between self-supervised learning and self-distillation methods. Specifically, we employ online clustering to proficiently group users by their distinct latent intents. Additionally, an adversarial learning strategy is utilized to ensure that the clustering procedure is not affected by the behavior length factor. Subsequently, we employ self-distillation to facilitate the transfer of knowledge from users with extensive behaviors (teachers) to users with limited behaviors (students). Experiments conducted on four real-world datasets validate the effectiveness of the proposed method.
Related papers
- Long-Sequence Recommendation Models Need Decoupled Embeddings [49.410906935283585]
We identify and characterize a neglected deficiency in existing long-sequence recommendation models.
A single set of embeddings struggles with learning both attention and representation, leading to interference between these two processes.
We propose the Decoupled Attention and Representation Embeddings (DARE) model, where two distinct embedding tables are learned separately to fully decouple attention and representation.
arXiv Detail & Related papers (2024-10-03T15:45:15Z) - Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
We propose DPCPL, the first pre-training and prompt-tuning paradigm tailored for Multi-Behavior Sequential Recommendation.
In the pre-training stage, we propose a novel Efficient Behavior Miner (EBM) to filter out the noise at multiple time scales.
Subsequently, we propose to tune the pre-trained model in a highly efficient manner with the proposed Customized Prompt Learning (CPL) module.
arXiv Detail & Related papers (2024-08-21T06:48:38Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - Multi-behavior Self-supervised Learning for Recommendation [36.42241501002167]
We propose a Multi-Behavior Self-Supervised Learning (MBSSL) framework together with an adaptive optimization method.
Specifically, we devise a behavior-aware graph neural network incorporating the self-attention mechanism to capture behavior multiplicity and dependencies.
Experiments on five real-world datasets demonstrate the consistent improvements obtained by MBSSL over ten state-of-the art (SOTA) baselines.
arXiv Detail & Related papers (2023-05-22T15:57:32Z) - Regularizing Second-Order Influences for Continual Learning [39.16131410356833]
Continual learning aims to learn on non-stationary data streams without catastrophically forgetting previous knowledge.
Prevalent replay-based methods address this challenge by rehearsing on a small buffer holding the seen data.
We dissect the interaction of sequential selection steps within a framework built on influence functions.
arXiv Detail & Related papers (2023-04-20T09:30:35Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
We propose a responsible active learning method, namely Peer Study Learning (PSL), to simultaneously preserve data privacy and improve model stability.
We first introduce a human-in-the-loop teacher-student architecture to isolate unlabelled data from the task learner (teacher) on the cloud-side.
During training, the task learner instructs the light-weight active learner which then provides feedback on the active sampling criterion.
arXiv Detail & Related papers (2022-11-24T13:18:27Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
We present SURF, a semi-supervised reward learning framework that utilizes a large amount of unlabeled samples with data augmentation.
In order to leverage unlabeled samples for reward learning, we infer pseudo-labels of the unlabeled samples based on the confidence of the preference predictor.
Our experiments demonstrate that our approach significantly improves the feedback-efficiency of the preference-based method on a variety of locomotion and robotic manipulation tasks.
arXiv Detail & Related papers (2022-03-18T16:50:38Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
We propose a novel model-agnostic training approach called WSLRec, which adopts a three-stage framework: pre-training, top-$k$ mining, intrinsic and fine-tuning.
WSLRec resolves the incompleteness problem by pre-training models on extra weak supervisions from model-free methods like BR and ItemCF, while resolving the inaccuracy problem by leveraging the top-$k$ mining to screen out reliable user-item relevance from weak supervisions for fine-tuning.
arXiv Detail & Related papers (2022-02-28T08:55:12Z) - Continually Learning Self-Supervised Representations with Projected
Functional Regularization [39.92600544186844]
Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised methods.
These methods are unable to acquire new knowledge incrementally -- they are, in fact, mostly used only as a pre-training phase with IID data.
To prevent forgetting of previous knowledge, we propose the usage of functional regularization.
arXiv Detail & Related papers (2021-12-30T11:59:23Z) - S^3-Rec: Self-Supervised Learning for Sequential Recommendation with
Mutual Information Maximization [104.87483578308526]
We propose the model S3-Rec, which stands for Self-Supervised learning for Sequential Recommendation.
For our task, we devise four auxiliary self-supervised objectives to learn the correlations among attribute, item, subsequence, and sequence.
Extensive experiments conducted on six real-world datasets demonstrate the superiority of our proposed method over existing state-of-the-art methods.
arXiv Detail & Related papers (2020-08-18T11:44:10Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
We propose self-supervised reinforcement learning for sequential recommendation tasks.
Our approach augments standard recommendation models with two output layers: one for self-supervised learning and the other for RL.
Based on such an approach, we propose two frameworks namely Self-Supervised Q-learning(SQN) and Self-Supervised Actor-Critic(SAC)
arXiv Detail & Related papers (2020-06-10T11:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.