論文の概要: Advancements in Radiomics and Artificial Intelligence for Thyroid Cancer Diagnosis
- arxiv url: http://arxiv.org/abs/2404.07239v1
- Date: Tue, 9 Apr 2024 11:05:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 17:46:48.892621
- Title: Advancements in Radiomics and Artificial Intelligence for Thyroid Cancer Diagnosis
- Title(参考訳): 甲状腺癌診断における放射線と人工知能の進歩
- Authors: Milad Yousefi, Shadi Farabi Maleki, Ali Jafarizadeh, Mahya Ahmadpour Youshanlui, Aida Jafari, Siamak Pedrammehr, Roohallah Alizadehsani, Ryszard Tadeusiewicz, Pawel Plawiak,
- Abstract要約: 本総説では, 甲状腺癌診断におけるAIおよび放射線治療の応用について概説する。
PRISMAガイドラインに準拠した複数のデータベースのレビューは2023年10月まで行われた。
- 参考スコア(独自算出の注目度): 1.6687900252134487
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Thyroid cancer is an increasing global health concern that requires advanced diagnostic methods. The application of AI and radiomics to thyroid cancer diagnosis is examined in this review. A review of multiple databases was conducted in compliance with PRISMA guidelines until October 2023. A combination of keywords led to the discovery of an English academic publication on thyroid cancer and related subjects. 267 papers were returned from the original search after 109 duplicates were removed. Relevant studies were selected according to predetermined criteria after 124 articles were eliminated based on an examination of their abstract and title. After the comprehensive analysis, an additional six studies were excluded. Among the 28 included studies, radiomics analysis, which incorporates ultrasound (US) images, demonstrated its effectiveness in diagnosing thyroid cancer. Various results were noted, some of the studies presenting new strategies that outperformed the status quo. The literature has emphasized various challenges faced by AI models, including interpretability issues, dataset constraints, and operator dependence. The synthesized findings of the 28 included studies mentioned the need for standardization efforts and prospective multicenter studies to address these concerns. Furthermore, approaches to overcome these obstacles were identified, such as advances in explainable AI technology and personalized medicine techniques. The review focuses on how AI and radiomics could transform the diagnosis and treatment of thyroid cancer. Despite challenges, future research on multidisciplinary cooperation, clinical applicability validation, and algorithm improvement holds the potential to improve patient outcomes and diagnostic precision in the treatment of thyroid cancer.
- Abstract(参考訳): 甲状腺癌は、高度な診断方法を必要とする世界的な健康上の問題である。
本総説では, 甲状腺癌診断におけるAIおよび放射線治療の応用について概説する。
PRISMAガイドラインに準拠した複数のデータベースのレビューは2023年10月まで行われた。
キーワードの組み合わせにより、甲状腺癌と関連する被験者に関するイギリスの学術出版物が発見された。
109件の複製が削除された後、267件の書類が元の捜索から返却された。
論文114項目を要約・題名試験により削除した後, 関連研究を所定基準に従って選択した。
総合的な分析の結果、追加の6つの研究が除外された。
28種類の研究のうち、超音波(US)画像を含む放射能分析は、甲状腺癌を診断する効果を実証した。
様々な結果が指摘され、いくつかの研究は現状を上回り、新たな戦略を提示した。
この文献は、解釈可能性の問題、データセットの制約、オペレータ依存など、AIモデルが直面するさまざまな課題を強調している。
28件の総合的な研究は、標準化の取り組みとこれらの懸念に対処するための先進的なマルチセンター研究の必要性について言及した。
さらに、説明可能なAI技術の進歩やパーソナライズされた医療技術など、これらの障害を克服するためのアプローチが特定された。
このレビューは、AIと放射線医学が甲状腺癌の診断と治療をどう変えるかに焦点を当てている。
課題にもかかわらず、今後の多分野連携、臨床応用性検証、アルゴリズム改善の研究は、甲状腺癌の治療における患者結果と診断精度を改善する可能性を秘めている。
関連論文リスト
- Prognosis of COVID-19 using Artificial Intelligence: A Systematic Review and Meta-analysis [0.23221087157793407]
この研究は、新型コロナウイルスの予後のためのAIの使用に関する論文を同定し、評価し、合成する。
例えば、Siamenseモデル、サポートベクターマシン、ランダムフォレスト、eXtreme Gradient Boosting、畳み込みニューラルネットワークなどである。
その結果, 死亡率71%, 88%, 67%の感度, 重症度評価, 換気の必要性が確認された。
論文 参考訳(メタデータ) (2024-08-01T00:33:32Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Large-scale Long-tailed Disease Diagnosis on Radiology Images [51.453990034460304]
RadDiagは、様々なモダリティと解剖学にわたる2Dおよび3D入力をサポートする基礎モデルである。
私たちのデータセットであるRP3D-DiagDSは、5,568の障害をカバーする195,010のスキャンで40,936の症例を含む。
論文 参考訳(メタデータ) (2023-12-26T18:20:48Z) - Can GPT-4V(ision) Serve Medical Applications? Case Studies on GPT-4V for
Multimodal Medical Diagnosis [59.35504779947686]
GPT-4VはOpenAIの最新のマルチモーダル診断モデルである。
評価対象は17の人体システムである。
GPT-4Vは、医用画像のモダリティと解剖学を区別する能力を示す。
疾患の診断と包括的報告作成において重大な課題に直面している。
論文 参考訳(メタデータ) (2023-10-15T18:32:27Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - AI in Thyroid Cancer Diagnosis: Techniques, Trends, and Future
Directions [3.2071249735671348]
本報告では, 甲状腺癌の診断に使用される人工知能(AI)技術に関する大量の論文を要約する。
この研究は、教師なし、教師なし、またはハイブリッド技術を通じて、AIベースのツールが甲状腺癌の診断と治療をどのようにサポートするかに焦点を当てている。
論文 参考訳(メタデータ) (2023-08-25T17:27:53Z) - Artificial Intelligence in Ovarian Cancer Histopathology: A Systematic
Review [1.832300121391956]
方法: PubMed, Scopus, Web of Science, CENTRAL, WHO-ICTRPの検索を行った。
PROBASTを用いてバイアスのリスクを評価した。
37の診断モデル、22の予後モデル、21の診断関連結果を含む80の関心モデルがあった。
すべてのモデルが全体として偏見のリスクが高いか、あるいは不明確であることが判明し、ほとんどの研究は分析において偏見のリスクが高いことが判明した。
論文 参考訳(メタデータ) (2023-03-31T12:26:29Z) - Deep Learning in Detection and Diagnosis of Covid-19 using Radiology
Modalities: A Systematic Review [0.0]
Covid-19の早期発見と診断は、Covid-19の流行の主な課題の1つです。
医学とコンピュータの研究者は、放射線画像の分析に機械学習モデルを使う傾向があった。
ディープラーニングベースモデルには、Covid-19の検出と診断のための正確で効率的なシステムを実現する並外れた能力があります。
論文 参考訳(メタデータ) (2020-12-21T18:54:01Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z) - A systematic review on the role of artificial intelligence in
sonographic diagnosis of thyroid cancer: Past, present and future [0.6523396727243321]
本総説は甲状腺癌の診断に利用できるテクニックの方法論に基づく分類である。
甲状腺悪性腫瘍の超音波診断分野の動向と課題を考察する。
マシンラーニングは、将来の甲状腺癌診断フレームワークの開発において、引き続き基本的な役割を果たす。
論文 参考訳(メタデータ) (2020-06-10T14:38:05Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
世界保健機関(WHO)は、SARS-CoV-2ウイルスによる新型コロナウイルスの感染をパンデミックと宣言した。
我々は、機械学習と、より広範に、人工知能を用いた最近の研究の概要を、新型コロナウイルス危機の多くの側面に取り組むために提示する。
論文 参考訳(メタデータ) (2020-03-25T12:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。