論文の概要: Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
- arxiv url: http://arxiv.org/abs/2404.07344v1
- Date: Wed, 10 Apr 2024 20:59:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 15:38:10.657491
- Title: Interactive Learning of Physical Object Properties Through Robot Manipulation and Database of Object Measurements
- Title(参考訳): ロボットマニピュレーションと物体計測データベースによる物体特性の対話的学習
- Authors: Andrej Kruzliak, Jiri Hartvich, Shubhan P. Patni, Lukas Rustler, Jan Kristof Behrens, Fares J. Abu-Dakka, Krystian Mikolajczyk, Ville Kyrki, Matej Hoffmann,
- Abstract要約: このフレームワークは、テーブル上のオブジェクトに関する学習を最大化する探索的なアクション選択を含む。
ロボットパイプラインは、ロギングモジュールとオブジェクトのオンラインデータベースと統合されており、グリッパーが異なる63のオブジェクトの24,000以上の計測結果を含んでいる。
- 参考スコア(独自算出の注目度): 20.301193437161867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work presents a framework for automatically extracting physical object properties, such as material composition, mass, volume, and stiffness, through robot manipulation and a database of object measurements. The framework involves exploratory action selection to maximize learning about objects on a table. A Bayesian network models conditional dependencies between object properties, incorporating prior probability distributions and uncertainty associated with measurement actions. The algorithm selects optimal exploratory actions based on expected information gain and updates object properties through Bayesian inference. Experimental evaluation demonstrates effective action selection compared to a baseline and correct termination of the experiments if there is nothing more to be learned. The algorithm proved to behave intelligently when presented with trick objects with material properties in conflict with their appearance. The robot pipeline integrates with a logging module and an online database of objects, containing over 24,000 measurements of 63 objects with different grippers. All code and data are publicly available, facilitating automatic digitization of objects and their physical properties through exploratory manipulations.
- Abstract(参考訳): 本研究は, ロボット操作による材料組成, 質量, 体積, 剛性などの物理的特性を自動的に抽出する枠組みと, 物体計測のデータベースを提供する。
このフレームワークは、テーブル上のオブジェクトに関する学習を最大化する探索的なアクション選択を含む。
ベイズネットワークは、測定行動に関連する事前確率分布と不確実性を組み込んだ、オブジェクト特性間の条件依存をモデル化する。
このアルゴリズムは、期待される情報ゲインに基づいて最適な探索行動を選択し、ベイズ推定によりオブジェクト特性を更新する。
実験による評価は, ベースラインと比較して効果的な行動選択を示し, 学習すべきことがなければ, 実験の正しい終了を示す。
アルゴリズムは、その外観と矛盾する材料特性を持つトリックオブジェクトを提示すると知的に振る舞うことが証明された。
ロボットパイプラインは、ロギングモジュールとオブジェクトのオンラインデータベースと統合されており、グリッパーが異なる63のオブジェクトの24,000以上の計測結果を含んでいる。
すべてのコードとデータは公開されており、探索的な操作を通じてオブジェクトとその物理的プロパティの自動デジタル化を容易にする。
関連論文リスト
- Learning active tactile perception through belief-space control [21.708391958446274]
本稿では,創造的世界モデルを開発することにより,触覚探索政策を自律的に学習する手法を提案する。
本手法は,目的が所望のオブジェクト特性を推定することである3つのシミュレーションタスクに対して評価する。
提案手法は, 所望のプロパティに関する情報を直感的に収集するポリシーを発見できることがわかった。
論文 参考訳(メタデータ) (2023-11-30T21:54:42Z) - Learning Extrinsic Dexterity with Parameterized Manipulation Primitives [8.7221770019454]
我々は、オブジェクトのポーズを変えるために環境を利用する一連のアクションを学習する。
我々のアプローチは、オブジェクトとグリップと環境の間の相互作用を利用してオブジェクトの状態を制御することができる。
拘束されたテーブルトップワークスペースから様々な重量,形状,摩擦特性の箱状物体を選別する手法の評価を行った。
論文 参考訳(メタデータ) (2023-10-26T21:28:23Z) - Localizing Active Objects from Egocentric Vision with Symbolic World
Knowledge [62.981429762309226]
タスクの指示をエゴセントリックな視点から積極的に下す能力は、AIエージェントがタスクを達成したり、人間をバーチャルに支援する上で不可欠である。
本稿では,現在進行中のオブジェクトの役割を学習し,指示から正確に抽出することで,アクティブなオブジェクトをローカライズするフレーズグラウンドモデルの性能を向上させることを提案する。
Ego4DおよびEpic-Kitchensデータセットに関するフレームワークの評価を行った。
論文 参考訳(メタデータ) (2023-10-23T16:14:05Z) - Multi-Object Graph Affordance Network: Goal-Oriented Planning through Learned Compound Object Affordances [1.9336815376402723]
Multi-Object Graph Affordance Networkは、オブジェクトと化合物の相互作用を促進するロボットアクションの結果を学ぶことによって、複雑な複合オブジェクトの余裕をモデル化する。
シミュレーションと実環境の両方において,コンケーブ・コンベックス・オブジェクトを含む複合オブジェクトの可利用性をモデル化した。
論文 参考訳(メタデータ) (2023-09-19T08:40:46Z) - InterTracker: Discovering and Tracking General Objects Interacting with
Hands in the Wild [40.489171608114574]
既存の方法は相互作用する物体を見つけるためにフレームベースの検出器に依存している。
本稿では,対話オブジェクトの追跡に手動オブジェクトのインタラクションを活用することを提案する。
提案手法は最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2023-08-06T09:09:17Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
The Hypothesize, Simulate, Act, Update, and Repeat (H-SAUR) is a probabilistic generative framework that generated hypotheses about objects articulate given input observed。
提案手法は,現在最先端のオブジェクト操作フレームワークよりも優れていることを示す。
我々は、学習に基づく視覚モデルから学習前の学習を統合することにより、H-SAURのテスト時間効率をさらに向上する。
論文 参考訳(メタデータ) (2022-10-22T18:39:33Z) - Learn to Predict How Humans Manipulate Large-sized Objects from
Interactive Motions [82.90906153293585]
本稿では,動きデータと動的記述子を融合させるグラフニューラルネットワークHO-GCNを提案する。
動的記述子を消費するネットワークは、最先端の予測結果が得られ、未確認オブジェクトへのネットワークの一般化に役立つことを示す。
論文 参考訳(メタデータ) (2022-06-25T09:55:39Z) - Fixing Malfunctional Objects With Learned Physical Simulation and
Functional Prediction [158.74130075865835]
機能不全な3Dオブジェクトが与えられたら、人間はその機能を推論し、どのように修正するかを理解するために精神シミュレーションを行うことができる。
人間の心的シミュレーションプロセスの模倣として,知覚と物理力学をシームレスに組み込んだ新しいフレームワークであるFixNetを提案する。
論文 参考訳(メタデータ) (2022-05-05T17:59:36Z) - Contrastive Object Detection Using Knowledge Graph Embeddings [72.17159795485915]
一つのホットアプローチで学習したクラス埋め込みの誤差統計と、自然言語処理や知識グラフから意味的に構造化された埋め込みを比較した。
本稿では,キーポイントベースおよびトランスフォーマーベースオブジェクト検出アーキテクチャの知識埋め込み設計を提案する。
論文 参考訳(メタデータ) (2021-12-21T17:10:21Z) - INVIGORATE: Interactive Visual Grounding and Grasping in Clutter [56.00554240240515]
INVIGORATEは、自然言語で人間と対話し、特定の物体をクラッタで把握するロボットシステムである。
我々は、物体検出、視覚的接地、質問生成、OBR検出と把握のために、別々のニューラルネットワークを訓練する。
我々は、学習したニューラルネットワークモジュールを統合する、部分的に観測可能なマルコフ決定プロセス(POMDP)を構築します。
論文 参考訳(メタデータ) (2021-08-25T07:35:21Z) - How to select and use tools? : Active Perception of Target Objects Using
Multimodal Deep Learning [9.677391628613025]
我々は,ロボットが物体と相互作用する間,マルチモーダル感覚運動子データを用いた能動的知覚に焦点を当てた。
物体の特徴を認識することを学ぶディープニューラルネットワーク(DNN)モデルを構築した。
また, 画像, 力, 触覚データのコントリビューションについても検討し, 多様なマルチモーダル情報を学習することで, ツール使用に対する認知度が向上することを示す。
論文 参考訳(メタデータ) (2021-06-04T12:49:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。