論文の概要: Security Modelling for Cyber-Physical Systems: A Systematic Literature Review
- arxiv url: http://arxiv.org/abs/2404.07527v1
- Date: Thu, 11 Apr 2024 07:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 14:49:00.561639
- Title: Security Modelling for Cyber-Physical Systems: A Systematic Literature Review
- Title(参考訳): サイバー物理システムのセキュリティモデリング:システム文献レビュー
- Authors: Shaofei Huang, Christopher M. Poskitt, Lwin Khin Shar,
- Abstract要約: サイバー物理システム(サイバー物理システム、CPS)は、デジタル技術とエンジニアリング分野の交差点にある。
CPSに対する主要なサイバーセキュリティ攻撃は、これらのシステムの脆弱性に注意を向けている。
この文献は、CPSセキュリティモデリングの最先端の研究を精査し、脅威と攻撃モデリングの両方を包含している。
- 参考スコア(独自算出の注目度): 7.3347982474177185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-physical systems (CPS) are at the intersection of digital technology and engineering domains, rendering them high-value targets of sophisticated and well-funded cybersecurity threat actors. Prominent cybersecurity attacks on CPS have brought attention to the vulnerability of these systems, and the soft underbelly of critical infrastructure reliant on CPS. Security modelling for CPS is an important mechanism to systematically identify and assess vulnerabilities, threats, and risks throughout system lifecycles, and to ultimately ensure system resilience, safety, and reliability. This literature review delves into state-of-the-art research in CPS security modelling, encompassing both threat and attack modelling. While these terms are sometimes used interchangeably, they are different concepts. This article elaborates on the differences between threat and attack modelling, examining their implications for CPS security. A systematic search yielded 428 articles, from which 15 were selected and categorised into three clusters: those focused on threat modelling methods, attack modelling methods, and literature reviews. Specifically, we sought to examine what security modelling methods exist today, and how they address real-world cybersecurity threats and CPS-specific attacker capabilities throughout the lifecycle of CPS, which typically span longer durations compared to traditional IT systems. This article also highlights several limitations in existing research, wherein security models adopt simplistic approaches that do not adequately consider the dynamic, multi-layer, multi-path, and multi-agent characteristics of real-world cyber-physical attacks.
- Abstract(参考訳): サイバー物理システム(CPS)は、デジタル技術とエンジニアリングドメインの交差点にあり、高度で資金の潤沢なサイバーセキュリティ脅威の標的となっている。
CPSに対する主要なサイバーセキュリティ攻撃は、これらのシステムの脆弱性に注意を向け、CPSに依存する重要なインフラの軟弱さに注意を向けている。
CPSのセキュリティモデリングは、システムライフサイクル全体にわたって脆弱性、脅威、リスクを体系的に識別し、評価し、最終的にシステムのレジリエンス、安全性、信頼性を保証するための重要なメカニズムである。
この文献は、CPSセキュリティモデリングの最先端の研究を精査し、脅威と攻撃モデリングの両方を包含している。
これらの用語は時々相互に使用されるが、それらは異なる概念である。
本稿では、脅威と攻撃モデリングの違いについて詳述し、CPSセキュリティへの影響について考察する。
体系的な調査によって428の論文が得られ、15の論文が選択され、3つのクラスタに分類された。
具体的には、CPSのライフサイクルを通じて、現在のセキュリティモデリング手法と、それらが現実世界のサイバーセキュリティ脅威やCPS固有の攻撃能力にどのように対処するかを検討することを試みた。
セキュリティモデルでは、現実のサイバー物理攻撃の動的、多層的、マルチパス的、マルチエージェント的特性を適切に考慮しない簡易的なアプローチが採用されている。
関連論文リスト
- A Survey of Anomaly Detection in Cyber-Physical Systems [1.2891210250935148]
本稿では,CPSにおける異常検出に対する研究者のアプローチについて概説する。
機械学習、ディープラーニング、数学的モデル、不変量、ハイブリッド技術などの手法を分類し比較する。
私たちのゴールは、読者がこれらの手法の長所と短所を理解し、より安全で信頼性の高いCPSを作成する方法を理解することです。
論文 参考訳(メタデータ) (2025-02-18T19:38:18Z) - Safety at Scale: A Comprehensive Survey of Large Model Safety [299.801463557549]
我々は、敵攻撃、データ中毒、バックドア攻撃、ジェイルブレイクとプロンプトインジェクション攻撃、エネルギー遅延攻撃、データとモデル抽出攻撃、出現するエージェント固有の脅威を含む、大規模なモデルに対する安全脅威の包括的分類を提示する。
我々は、大規模なモデル安全性におけるオープンな課題を特定し、議論し、包括的な安全性評価、スケーラブルで効果的な防御機構、持続可能なデータプラクティスの必要性を強調します。
論文 参考訳(メタデータ) (2025-02-02T05:14:22Z) - Cyber-Physical Security Vulnerabilities Identification and Classification in Smart Manufacturing -- A Defense-in-Depth Driven Framework and Taxonomy [0.0]
既存のソリューションは、製造環境の複雑なドメイン固有の脆弱性に対処するのに不足している。
本稿では, 脆弱性と防御の二重性に基づく新たな特徴付けを導入することにより, 製造状況における脆弱性を再定義する。
我々は,製造サイバースペース,人体要素,ポストプロダクション検査システム,生産プロセス監視,組織方針および手順の脆弱性を特定し,分類する。
論文 参考訳(メタデータ) (2024-12-29T11:41:06Z) - Evidence-Based Threat Modeling for ICS [0.0]
ICS環境は電力網、水処理施設、製造工場などの重要なインフラの運営に不可欠である。
本稿では,既存のコンポーネントのCVEエントリに基づいて,脅威を体系的に識別する新しいエビデンスベースの手法を提案する。
我々は、我々の方法論を使えるツールとして実装し、それを典型的なSCADAシステムに適用し、我々の方法論が現実の環境で実用的で適用可能であることを実証した。
論文 参考訳(メタデータ) (2024-11-29T15:05:00Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - New Emerged Security and Privacy of Pre-trained Model: a Survey and Outlook [54.24701201956833]
セキュリティとプライバシーの問題は、事前訓練されたモデルに対するユーザーの信頼を損なう。
現在の文献は、事前訓練されたモデルに対する攻撃と防御の明確な分類を欠いている。
この分類法は、攻撃と防御をNo-Change、Input-Change、Model-Changeアプローチに分類する。
論文 参考訳(メタデータ) (2024-11-12T10:15:33Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z) - CyberLearning: Effectiveness Analysis of Machine Learning Security
Modeling to Detect Cyber-Anomalies and Multi-Attacks [5.672898304129217]
サイバーラーニング(CyberLearning)は、相関機能選択による機械学習ベースのサイバーセキュリティモデリングである。
本稿では,異常検出のためのバイナリ分類モデルと,各種サイバー攻撃に対するマルチクラス分類モデルについて考察する。
次に、複数の隠蔽層を考慮した人工知能ニューラルネットワークベースのセキュリティモデルを提案する。
論文 参考訳(メタデータ) (2021-03-28T18:47:16Z) - Dos and Don'ts of Machine Learning in Computer Security [74.1816306998445]
大きな可能性にもかかわらず、セキュリティにおける機械学習は、パフォーマンスを損なう微妙な落とし穴を引き起こす傾向がある。
我々は,学習ベースのセキュリティシステムの設計,実装,評価において共通の落とし穴を特定する。
我々は,落とし穴の回避や軽減を支援するために,研究者を支援するための実用的な勧告を提案する。
論文 参考訳(メタデータ) (2020-10-19T13:09:31Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。