論文の概要: A Large Language Model-Supported Threat Modeling Framework for Transportation Cyber-Physical Systems
- arxiv url: http://arxiv.org/abs/2506.00831v2
- Date: Mon, 28 Jul 2025 14:17:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-29 14:15:46.644221
- Title: A Large Language Model-Supported Threat Modeling Framework for Transportation Cyber-Physical Systems
- Title(参考訳): 大規模言語モデルを用いたサイバー物理システムのための脅威モデリングフレームワーク
- Authors: M Sabbir Salek, Mashrur Chowdhury, Muhaimin Bin Munir, Yuchen Cai, Mohammad Imtiaz Hasan, Jean-Michel Tine, Latifur Khan, Mizanur Rahman,
- Abstract要約: TraCR-TMFは、輸送用CPSの脅威、潜在的な攻撃技術、および関連する対策を特定する。
TraCR-TMFは、輸送用CPSエンティティ間の脆弱性に基づいた重要な資産に対するLLMベースの攻撃パス識別を提供する。
CVSS(Common Vulnerability Scoring System)スコアが組み込まれている。
- 参考スコア(独自算出の注目度): 11.872361272221244
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Existing threat modeling frameworks related to transportation cyber-physical systems (CPS) are often narrow in scope, labor-intensive, and require substantial cybersecurity expertise. To this end, we introduce the Transportation Cybersecurity and Resiliency Threat Modeling Framework (TraCR-TMF), a large language model (LLM)-based threat modeling framework for transportation CPS that requires limited cybersecurity expert intervention. TraCR-TMF identifies threats, potential attack techniques, and relevant countermeasures for transportation CPS. Three LLM-based approaches support these identifications: (i) a retrieval-augmented generation approach requiring no cybersecurity expert intervention, (ii) an in-context learning approach with low expert intervention, and (iii) a supervised fine-tuning approach with moderate expert intervention. TraCR-TMF offers LLM-based attack path identification for critical assets based on vulnerabilities across transportation CPS entities. Additionally, it incorporates the Common Vulnerability Scoring System (CVSS) scores of known exploited vulnerabilities to prioritize threat mitigations. The framework was evaluated through two cases. First, the framework identified relevant attack techniques for various transportation CPS applications, 73% of which were validated by cybersecurity experts as correct. Second, the framework was used to identify attack paths for a target asset in a real-world cyberattack incident. TraCR-TMF successfully predicted exploitations, like lateral movement of adversaries, data exfiltration, and data encryption for ransomware, as reported in the incident. These findings show the efficacy of TraCR-TMF in transportation CPS threat modeling, while reducing the need for extensive involvement of cybersecurity experts. To facilitate real-world adoptions, all our codes are shared via an open-source repository.
- Abstract(参考訳): 既存のサイバー物理システム(CPS)に関連する脅威モデリングフレームワークは、スコープが狭く、労働集約的で、かなりのサイバーセキュリティの専門知識を必要とすることが多い。
この目的のために,大規模言語モデル(LLM)に基づくサイバーセキュリティ専門家の介入を限定したCPSの脅威モデリングフレームワークであるTransport Cybersecurity and Resiliency Threat Modeling Framework (TraCR-TMF)を紹介する。
TraCR-TMFは、輸送用CPSの脅威、潜在的な攻撃技術、および関連する対策を特定する。
LLMベースの3つのアプローチは、これらの識別をサポートする。
(i)サイバーセキュリティ専門家の介入を必要としない検索強化世代アプローチ
(二)専門家の介入が少ない文脈内学習アプローチ、及び
(三)適度な専門的介入を伴う指導的微調整アプローチ。
TraCR-TMFは、輸送用CPSエンティティ間の脆弱性に基づいた重要な資産に対するLLMベースの攻撃パス識別を提供する。
さらに、CVSS(Common Vulnerability Scoring System)スコアを悪用された既知の脆弱性のスコアに組み込んで、脅威軽減を優先する。
この枠組みは2例で評価された。
まず、このフレームワークは様々な輸送用CPSアプリケーションに対する関連する攻撃テクニックを特定し、そのうち73%はサイバーセキュリティの専門家によって正当に検証された。
第二に、現実世界のサイバー攻撃事件における標的資産の攻撃経路を特定するためにこのフレームワークが使われた。
TraCR-TMFは、インシデントで報告されたように、敵の側方移動、データ流出、ランサムウェアのデータ暗号化などのエクスプロイトをうまく予測した。
以上の結果から,TraCR-TMFによるCPS脅威モデリングの有効性が示唆された。
実世界の採用を容易にするため、私たちのコードはオープンソースリポジトリを通じて共有されています。
関連論文リスト
- Towards Secure MLOps: Surveying Attacks, Mitigation Strategies, and Research Challenges [4.6592774515395465]
我々は,MLOpsエコシステムのさまざまなフェーズにわたる攻撃を評価するために,MITRE ATLAS(Adrial Threat Landscape for Artificial-Intelligence Systems)フレームワークの体系的応用を提案する。
次に、MLOpsエコシステムの対応するフェーズに明示的にマッピングされた攻撃手法の構造的分類を示す。
これに続いて、これらの攻撃カテゴリに沿った緩和戦略の分類が行われ、MLOpsエコシステムのセキュリティを強化するための実行可能なアーリーステージディフェンスが提供される。
論文 参考訳(メタデータ) (2025-05-30T17:45:31Z) - A Proposal for Evaluating the Operational Risk for ChatBots based on Large Language Models [39.58317527488534]
3つの主要なステークホルダーに対する潜在的な脅威を同時に評価する新しいリスク評価指標を提案する。
メトリクスを検証するために、脆弱性テスト用のオープンソースのフレームワークであるGarakを活用しています。
その結果、セキュアで信頼性の高いAI駆動会話システムの運用における多次元リスクアセスメントの重要性が浮き彫りになった。
論文 参考訳(メタデータ) (2025-05-07T20:26:45Z) - Enhancing Network Security Management in Water Systems using FM-based Attack Attribution [43.48086726793515]
本稿では,水系センサとアクチュエータの相互作用を生かし,サイバー攻撃に対する詳細な説明と属性を提供する,FM(Model-Agnostic Factorization Machines)に基づく新しい手法を提案する。
複雑なセンサーとアクチュエータの相互作用を含む多機能サイバー攻撃シナリオにおいて、FMベースの攻撃属性法は攻撃根原因を効果的にランク付けし、SHAPやLEMNAよりも平均20%向上した。
論文 参考訳(メタデータ) (2025-03-03T06:52:00Z) - Cyber Defense Reinvented: Large Language Models as Threat Intelligence Copilots [36.809323735351825]
CYLENSは、大規模言語モデル(LLM)を利用したサイバー脅威情報通信システムである。
CYLENSは、脅威管理ライフサイクル全体を通じてセキュリティ専門家を支援するように設計されている。
脅威帰属、文脈化、検出、相関、優先順位付け、修復をサポートする。
論文 参考訳(メタデータ) (2025-02-28T07:16:09Z) - Simulation of Multi-Stage Attack and Defense Mechanisms in Smart Grids [2.0766068042442174]
電力グリッドのインフラと通信のダイナミクスを再現するシミュレーション環境を導入する。
このフレームワークは多様なリアルな攻撃データを生成し、サイバー脅威を検出し緩和するための機械学習アルゴリズムを訓練する。
また、高度な意思決定支援システムを含む、新興のセキュリティ技術を評価するための、制御された柔軟なプラットフォームも提供する。
論文 参考訳(メタデータ) (2024-12-09T07:07:17Z) - Countering Autonomous Cyber Threats [40.00865970939829]
ファンデーションモデルは、サイバードメイン内で広く、特に二元的関心事を提示します。
近年の研究では、これらの先進的なモデルが攻撃的なサイバースペース操作を通知または独立に実行する可能性を示している。
この研究は、孤立したネットワークでマシンを妥協する能力について、最先端のいくつかのFMを評価し、そのようなAIによる攻撃を倒す防御メカニズムを調査する。
論文 参考訳(メタデータ) (2024-10-23T22:46:44Z) - Security Modelling for Cyber-Physical Systems: A Systematic Literature Review [7.3347982474177185]
サイバー物理システム(サイバー物理システム、CPS)は、デジタル技術とエンジニアリング分野の交差点にある。
CPSに対する主要なサイバーセキュリティ攻撃は、これらのシステムの脆弱性に注意を向けている。
この文献は、CPSセキュリティモデリングの最先端の研究を精査し、脅威と攻撃モデリングの両方を包含している。
論文 参考訳(メタデータ) (2024-04-11T07:41:36Z) - A Framework for Evaluating the Cybersecurity Risk of Real World, Machine
Learning Production Systems [41.470634460215564]
我々はML生産システムにサイバー攻撃を組み込むMulVAL攻撃グラフ生成および分析フレームワークの拡張を開発する。
提案された拡張を使用することで、セキュリティ実践者はMLコンポーネントを含む環境にアタックグラフ分析手法を適用することができる。
論文 参考訳(メタデータ) (2021-07-05T05:58:11Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - Constraints Satisfiability Driven Reinforcement Learning for Autonomous
Cyber Defense [7.321728608775741]
強化学習(RL)の防御政策の最適化と検証を目的とした新しいハイブリッド自律エージェントアーキテクチャを紹介します。
我々は、安全かつ効果的な行動に向けてRL決定を操るために、制約検証(SMT(Satisfiability modulo theory))を用いる。
シミュレーションCPS環境における提案手法の評価は,エージェントが最適方針を迅速に学習し,99%のケースで多種多様な攻撃戦略を破ることを示す。
論文 参考訳(メタデータ) (2021-04-19T01:08:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。