Accurate neural quantum states for interacting lattice bosons
- URL: http://arxiv.org/abs/2404.07869v1
- Date: Thu, 11 Apr 2024 16:04:33 GMT
- Title: Accurate neural quantum states for interacting lattice bosons
- Authors: Zakari Denis, Giuseppe Carleo,
- Abstract summary: We show that a neural quantum state is able to faithfully represent the ground state of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength.
This enables us to investigate the scaling of the entanglement entropy across the super-to-Mott quantum phase transition.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, neural quantum states have emerged as a powerful variational approach, achieving state-of-the-art accuracy when representing the ground-state wave function of a great variety of quantum many-body systems, including spin lattices, interacting fermions or continuous-variable systems. However, accurate neural representations of the ground state of interacting bosons on a lattice have remained elusive. We introduce a neural backflow Jastrow Ansatz, in which occupation factors are dressed with translationally equivariant many-body features generated by a deep neural network. We show that this neural quantum state is able to faithfully represent the ground state of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength. We scale our simulations to lattices of dimension up to $20{\times}20$ while achieving the best variational energies reported for this model. This enables us to investigate the scaling of the entanglement entropy across the superfluid-to-Mott quantum phase transition, a quantity hard to extract with non-variational approaches.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Entanglement transition in deep neural quantum states [0.0]
We show how information propagation in deep neural networks impacts the physical entanglement properties of deep neural quantum states.
With this bridge we can identify optimal neural quantum state hyper parameter regimes for representing area as well as volume law entangled states.
This advance of our understanding of network configurations for accurate quantum state representation helps to develop effective representations to deal with volume-law quantum states.
arXiv Detail & Related papers (2023-12-19T08:40:23Z) - Simplicity of mean-field theories in neural quantum states [0.0]
Ground states of mean-field theories with permutation symmetry only require a limited number of independent neural network parameters.
We show that convergence to the ground state of the fully-connected transverse-field Ising model (TFIM) can be achieved with just one single parameter.
arXiv Detail & Related papers (2023-08-21T18:00:01Z) - Neural-network quantum states for ultra-cold Fermi gases [49.725105678823915]
This work introduces a novel Pfaffian-Jastrow neural-network quantum state that includes backflow transformation based on message-passing architecture.
We observe the emergence of strong pairing correlations through the opposite-spin pair distribution functions.
Our findings suggest that neural-network quantum states provide a promising strategy for studying ultra-cold Fermi gases.
arXiv Detail & Related papers (2023-05-15T17:46:09Z) - Machine learning one-dimensional spinless trapped fermionic systems with
neural-network quantum states [1.6606527887256322]
We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a gaussian potential.
We use an antisymmetric artificial neural network, or neural quantum state, as an ansatz for the wavefunction.
We find very different ground states depending on the sign of the interaction.
arXiv Detail & Related papers (2023-04-10T17:36:52Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Measuring Quantum Entanglement from Local Information by Machine
Learning [10.161394383081145]
Entanglement is a key property in the development of quantum technologies.
We present a neural network-assisted protocol for measuring entanglement in equilibrium and non-equilibrium states of local Hamiltonians.
arXiv Detail & Related papers (2022-09-18T08:15:49Z) - An Empirical Study of Quantum Dynamics as a Ground State Problem with
Neural Quantum States [0.0]
Neural quantum states are variational wave functions parameterised by artificial neural networks.
In the context of many-body physics, methods such as variational Monte Carlo with neural quantum states as variational wave functions are successful in approximating.
However, all the difficulties of proposing neural network architectures, along with exploring their expressivity and trainability, permeate their application as neural quantum states.
arXiv Detail & Related papers (2022-06-18T16:42:39Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.