Simplicity of mean-field theories in neural quantum states
- URL: http://arxiv.org/abs/2308.10934v2
- Date: Tue, 11 Jun 2024 11:20:41 GMT
- Title: Simplicity of mean-field theories in neural quantum states
- Authors: Fabian Ballar Trigueros, Tiago Mendes-Santos, Markus Heyl,
- Abstract summary: Ground states of mean-field theories with permutation symmetry only require a limited number of independent neural network parameters.
We show that convergence to the ground state of the fully-connected transverse-field Ising model (TFIM) can be achieved with just one single parameter.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The utilization of artificial neural networks for representing quantum many-body wave functions has garnered significant attention, with enormous recent progress for both ground states and non-equilibrium dynamics. However, quantifying state complexity within this neural quantum states framework remains elusive. In this study, we address this key open question from the complementary point of view: Which states are simple to represent with neural quantum states? Concretely, we show on a general level that ground states of mean-field theories with permutation symmetry only require a limited number of independent neural network parameters. We analytically establish that, in the thermodynamic limit, convergence to the ground state of the fully-connected transverse-field Ising model (TFIM), the mean-field Ising model, can be achieved with just one single parameter. Expanding our analysis, we explore the behavior of the 1-parameter ansatz under breaking of the permutation symmetry. For that purpose, we consider the TFIM with tunable long-range interactions, characterized by an interaction exponent $\alpha$. We show analytically that the 1-parameter ansatz for the neural quantum state still accurately captures the ground state for a whole range of values for $0\le \alpha \le 1$, implying a mean-field description of the model in this regime.
Related papers
- Accurate neural quantum states for interacting lattice bosons [0.0]
We show that a neural quantum state is able to faithfully represent the ground state of the 2D Bose-Hubbard Hamiltonian across all values of the interaction strength.
This enables us to investigate the scaling of the entanglement entropy across the super-to-Mott quantum phase transition.
arXiv Detail & Related papers (2024-04-11T16:04:33Z) - From Heisenberg to Hubbard: An initial state for the shallow quantum
simulation of correlated electrons [0.0]
We propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model.
First, the ground state of the Heisenberg model is suitable for near-term quantum hardware.
Second, a general method is devised to convert a multi-spin-$frac12$ wave function into its fermionic version.
arXiv Detail & Related papers (2023-10-25T17:05:50Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Can neural quantum states learn volume-law ground states? [0.0]
We study whether neural quantum states based on multi-layer feed-forward networks can find ground states which exhibit volume-law entanglement entropy.
We find that both shallow and deep feed-forward networks require an exponential number of parameters in order to represent the ground state of this model.
arXiv Detail & Related papers (2022-12-05T12:26:20Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - An Empirical Study of Quantum Dynamics as a Ground State Problem with
Neural Quantum States [0.0]
Neural quantum states are variational wave functions parameterised by artificial neural networks.
In the context of many-body physics, methods such as variational Monte Carlo with neural quantum states as variational wave functions are successful in approximating.
However, all the difficulties of proposing neural network architectures, along with exploring their expressivity and trainability, permeate their application as neural quantum states.
arXiv Detail & Related papers (2022-06-18T16:42:39Z) - On the properties of the asymptotic incompatibility measure in
multiparameter quantum estimation [62.997667081978825]
Incompatibility (AI) is a measure which quantifies the difference between the Holevo and the SLD scalar bounds.
We show that the maximum amount of AI is attainable only for quantum statistical models characterized by a purity larger than $mu_sf min = 1/(d-1)$.
arXiv Detail & Related papers (2021-07-28T15:16:37Z) - Continuous-variable neural-network quantum states and the quantum rotor
model [2.3398944692275476]
We study neural-network quantum state algorithms for analyzing continuous-variable lattice quantum systems in first quantization.
A family of continuous-variable trial wavefunctons is introduced which naturally generalizes the Boltzmann machine (RBM) wavefunction.
Results are compared against those obtained from partial differential equation (PDE) based scalable eigensolvers.
arXiv Detail & Related papers (2021-07-15T03:53:14Z) - Variational Monte Carlo calculations of $\mathbf{A\leq 4}$ nuclei with
an artificial neural-network correlator ansatz [62.997667081978825]
We introduce a neural-network quantum state ansatz to model the ground-state wave function of light nuclei.
We compute the binding energies and point-nucleon densities of $Aleq 4$ nuclei as emerging from a leading-order pionless effective field theory Hamiltonian.
arXiv Detail & Related papers (2020-07-28T14:52:28Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.