論文の概要: InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models
- arxiv url: http://arxiv.org/abs/2404.07940v2
- Date: Thu, 27 Jun 2024 08:06:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 19:16:49.534925
- Title: InfiBench: Evaluating the Question-Answering Capabilities of Code Large Language Models
- Title(参考訳): InfiBench: 大規模言語モデルの質問応答能力の評価
- Authors: Linyi Li, Shijie Geng, Zhenwen Li, Yibo He, Hao Yu, Ziyue Hua, Guanghan Ning, Siwei Wang, Tao Xie, Hongxia Yang,
- Abstract要約: InfiBenchは、私たちの知識に合ったコードのための、最初の大規模フリーフォーム質問回答(QA)ベンチマークです。
慎重に選択された234の高品質なStack Overflow質問で構成されており、15のプログラミング言語にまたがっている。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
- 参考スコア(独自算出の注目度): 56.723509505549536
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models for code (code LLMs) have witnessed tremendous progress in recent years. With the rapid development of code LLMs, many popular evaluation benchmarks, such as HumanEval, DS-1000, and MBPP, have emerged to measure the performance of code LLMs with a particular focus on code generation tasks. However, they are insufficient to cover the full range of expected capabilities of code LLMs, which span beyond code generation to answering diverse coding-related questions. To fill this gap, we propose InfiBench, the first large-scale freeform question-answering (QA) benchmark for code to our knowledge, comprising 234 carefully selected high-quality Stack Overflow questions that span across 15 programming languages. InfiBench uses four types of model-free automatic metrics to evaluate response correctness where domain experts carefully concretize the criterion for each question. We conduct a systematic evaluation for over 100 latest code LLMs on InfiBench, leading to a series of novel and insightful findings. Our detailed analyses showcase potential directions for further advancement of code LLMs. InfiBench is fully open source and continuously expanding to foster more scientific and systematic practices for code LLM evaluation.
- Abstract(参考訳): コードのための大規模言語モデル(コードLLM)は、近年大きく進歩している。
コードLLMの急速な開発に伴い、HumanEval、DS-1000、MBPPといった多くの評価ベンチマークが登場し、コードLLMのパフォーマンスをコード生成タスクに特化して測定している。
しかし、コード生成から様々なコーディング関連質問への回答まで、コードLLMの期待される機能の全範囲をカバーするには不十分です。
このギャップを埋めるために,我々は,15のプログラミング言語にまたがる高品質なStack Overflow質問を慎重に選択した234のコードを対象とした,最初の大規模フリーフォーム質問回答(QA)ベンチマークであるInfiBenchを提案する。
InfiBenchは4種類のモデルフリー自動メトリクスを使用して応答の正しさを評価する。
InfiBench上で100以上の最新のコードLLMに対して,系統的評価を行い,新しい知見と洞察に富んだ結果を得た。
より詳細な分析により,LLMのさらなる発展の道筋が明らかとなった。
InfiBenchは完全にオープンソースで、LLM評価のためのより科学的かつ体系的なプラクティスを育むために継続的に拡張されている。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
大規模言語モデル(LLM)は、標準解に比べて短いがより複雑なコードを生成する。
3つのカテゴリと12のサブカテゴリを含む誤ったコードに対するバグの分類を開発し、一般的なバグタイプに対する根本原因を分析する。
そこで本研究では,LLMがバグタイプやコンパイラフィードバックに基づいて生成したコードを批判し,修正することのできる,自己批判を導入した新たな学習自由反復手法を提案する。
論文 参考訳(メタデータ) (2024-07-08T17:27:17Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
大規模言語モデル(LLM)は、コード生成において大きな進歩を遂げていますが、既存の研究は、ソフトウェア開発の動的な性質を説明できません。
バージョン別コード補完(VSCC)とバージョン別コードマイグレーション(VACM)の2つの新しいタスクを提案する。
VersiCodeについて広範な評価を行い、バージョン管理可能なコード生成が確かに重要な課題であることを示した。
論文 参考訳(メタデータ) (2024-06-11T16:15:06Z) - RepoQA: Evaluating Long Context Code Understanding [12.329233433333416]
RepoQAは、Large Language Models(LLM)を長文のコード理解で評価するためのベンチマークである。
RepoQAには、5つのモダンプログラミング言語にまたがる50の人気のあるリポジトリから収集された500のコード検索タスクが含まれている。
論文 参考訳(メタデータ) (2024-06-10T05:15:30Z) - Benchmarking the Communication Competence of Code Generation for LLMs and LLM Agent [2.8391355909797644]
大規模言語モデル(LLM)は、コード生成の分野でタスクを実行する能力を大幅に改善した。
LLMが有能なプログラマであることと、最上位のソフトウェアエンジニアであることの間にはまだギャップがある。
論文 参考訳(メタデータ) (2024-05-31T22:06:18Z) - Reasoning Runtime Behavior of a Program with LLM: How Far Are We? [25.451857140926943]
コードのための大規模な言語モデル(LLM)は、強力なコード理解と生成能力を示している。
コード推論は、コードLLMの最も重要な能力の1つである。
本稿では,プログラム実行によるLLMのコード推論能力と一貫性を評価するためのフレームワークであるRevalを提案する。
論文 参考訳(メタデータ) (2024-03-25T05:37:16Z) - LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code [34.03774442237902]
コード関連アプリケーションに適用される大規模言語モデルは、顕著な分野として現れている。
既存の評価ベンチマーク(HumanEval、MBPPなど)は、もはやその能力を評価するには不十分である。
コードに対するLLMの包括的で汚染のない評価手法であるLiveCodeBenchを提案する。
論文 参考訳(メタデータ) (2024-03-12T17:58:04Z) - Code Prompting Elicits Conditional Reasoning Abilities in Text+Code LLMs [65.2379940117181]
自然言語の問題をコードに変換する一連のプロンプトであるコードプロンプトを導入します。
コードプロンプトは複数のLLMに対して高速に向上することがわかった。
GPT 3.5を解析した結果,入力問題のコードフォーマッティングが性能向上に不可欠であることが判明した。
論文 参考訳(メタデータ) (2024-01-18T15:32:24Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - CodeApex: A Bilingual Programming Evaluation Benchmark for Large
Language Models [43.655927559990616]
我々は,LLMのプログラミング理解,コード生成,コード修正能力に着目したベンチマークデータセットであるCodeApexを提案する。
汎用モデルと特化モデルの両方を含む,広く使用されているLLMを12種類評価した。
GPT-4は最高のプログラミング能力を示し、それぞれ69%、54%、66%の精度を達成している。
論文 参考訳(メタデータ) (2023-09-05T04:12:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。