論文の概要: SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning
- arxiv url: http://arxiv.org/abs/2404.07941v1
- Date: Mon, 11 Mar 2024 05:19:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-14 13:03:36.113120
- Title: SiGNN: A Spike-induced Graph Neural Network for Dynamic Graph Representation Learning
- Title(参考訳): SiGNN: 動的グラフ表現学習のためのスパイク誘発グラフニューラルネットワーク
- Authors: Dong Chen, Shuai Zheng, Muhao Xu, Zhenfeng Zhu, Yao Zhao,
- Abstract要約: 本研究では,動的グラフ上での時空間表現の強化を学習するための,スパイク誘発グラフニューラルネットワーク(SiGNN)という新しいフレームワークを提案する。
TA機構を利用して、SiGNNはSNNの時間的ダイナミクスを効果的に活用するだけでなく、スパイクのバイナリの性質によって課される表現的制約を積極的に回避する。
実世界の動的グラフデータセットに対する大規模な実験は、ノード分類タスクにおけるSiGNNの優れた性能を示す。
- 参考スコア(独自算出の注目度): 42.716744098170835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the domain of dynamic graph representation learning (DGRL), the efficient and comprehensive capture of temporal evolution within real-world networks is crucial. Spiking Neural Networks (SNNs), known as their temporal dynamics and low-power characteristic, offer an efficient solution for temporal processing in DGRL task. However, owing to the spike-based information encoding mechanism of SNNs, existing DGRL methods employed SNNs face limitations in their representational capacity. Given this issue, we propose a novel framework named Spike-induced Graph Neural Network (SiGNN) for learning enhanced spatialtemporal representations on dynamic graphs. In detail, a harmonious integration of SNNs and GNNs is achieved through an innovative Temporal Activation (TA) mechanism. Benefiting from the TA mechanism, SiGNN not only effectively exploits the temporal dynamics of SNNs but also adeptly circumvents the representational constraints imposed by the binary nature of spikes. Furthermore, leveraging the inherent adaptability of SNNs, we explore an in-depth analysis of the evolutionary patterns within dynamic graphs across multiple time granularities. This approach facilitates the acquisition of a multiscale temporal node representation.Extensive experiments on various real-world dynamic graph datasets demonstrate the superior performance of SiGNN in the node classification task.
- Abstract(参考訳): 動的グラフ表現学習(DGRL)の分野では、実世界のネットワークにおける時間的進化の効率的かつ包括的なキャプチャが重要である。
スパイキングニューラルネットワーク(SNN)は、その時間的ダイナミクスと低消費電力特性として知られ、DGRLタスクにおける時間的処理の効率的なソリューションを提供する。
しかし、SNNのスパイクに基づく情報符号化機構により、既存のDGRL法ではSNNの表現能力に制限がある。
本稿では,動的グラフ上での時空間表現の強化を学習するための,スパイク誘発グラフニューラルネットワーク(SiGNN)という新しいフレームワークを提案する。
詳細は、SNNとGNNの調和した統合は、革新的な時間活性化(TA)機構によって達成される。
TA機構を利用して、SiGNNはSNNの時間的ダイナミクスを効果的に活用するだけでなく、スパイクのバイナリの性質によって課される表現的制約を積極的に回避する。
さらに、SNNの固有の適応性を活用し、複数の時間粒度にわたる動的グラフ内の進化パターンを詳細に分析する。
ノード分類タスクにおけるSiGNNの優れた性能を示す実世界の動的グラフデータセットの大規模な実験により,マルチスケールの時間ノード表現の取得が容易となる。
関連論文リスト
- Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
スパイキングニューラルネットワーク(SNN)は、ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
本研究は,グラフ表現学習の強化におけるスパイキングダイナミクスの特質とメリットについて考察する。
スパイキングダイナミクスを取り入れたスパイクに基づくグラフニューラルネットワークモデルを提案し,新しい時空間特徴正規化(STFN)技術により強化した。
論文 参考訳(メタデータ) (2024-07-30T02:53:26Z) - DTFormer: A Transformer-Based Method for Discrete-Time Dynamic Graph Representation Learning [38.53424185696828]
離散時間動的グラフ(DTDG)の表現学習は、時間的に変化するエンティティとその進化する接続のダイナミクスをモデル化するために広く応用されている。
本稿では,従来の GNN+RNN フレームワークから Transformer ベースのアーキテクチャへ移行した DTDG のための表現学習手法 DTFormer を提案する。
論文 参考訳(メタデータ) (2024-07-26T05:46:23Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - A survey of dynamic graph neural networks [26.162035361191805]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから効果的にマイニングし学習するための強力なツールとして登場した。
本稿では,基本的な概念,鍵となる技術,そして最先端の動的GNNモデルについて概観する。
論文 参考訳(メタデータ) (2024-04-28T15:07:48Z) - Continuous Spiking Graph Neural Networks [43.28609498855841]
連続グラフニューラルネットワーク(CGNN)は、既存の離散グラフニューラルネットワーク(GNN)を一般化する能力によって注目されている。
本稿では,2階ODEを用いたCOS-GNNの高次構造について紹介する。
我々は、COS-GNNが爆発や消滅の問題を効果的に軽減し、ノード間の長距離依存関係を捕捉できるという理論的証明を提供する。
論文 参考訳(メタデータ) (2024-04-02T12:36:40Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
時空間グラフニューラルネットワーク(ST-GNN)は、時間変動データの効率的なグラフ表現を学習する。
本稿では,ST-GNNの特性を再検討し,安定なグラフ安定性を示す。
解析の結果,ST-GNNは時間変化グラフ上での移動学習に適していることが示唆された。
論文 参考訳(メタデータ) (2022-10-28T16:59:51Z) - Exploiting Spiking Dynamics with Spatial-temporal Feature Normalization
in Graph Learning [9.88508686848173]
内在的なダイナミクスを持つ生物学的スパイキングニューロンは、脳の強力な表現力と学習能力を持つ。
ユークリッド空間タスクを処理するためのスパイクニューラルネットワーク(SNN)の最近の進歩にもかかわらず、非ユークリッド空間データの処理においてSNNを活用することは依然として困難である。
本稿では,グラフ学習のためのSNNの直接学習を可能にする,一般的なスパイクに基づくモデリングフレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:20:16Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。