論文の概要: Language Imbalance Can Boost Cross-lingual Generalisation
- arxiv url: http://arxiv.org/abs/2404.07982v1
- Date: Thu, 11 Apr 2024 17:58:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 12:49:46.949002
- Title: Language Imbalance Can Boost Cross-lingual Generalisation
- Title(参考訳): 言語不均衡は言語間の一般化を促進する
- Authors: Anton Schäfer, Shauli Ravfogel, Thomas Hofmann, Tiago Pimentel, Imanol Schlag,
- Abstract要約: 本研究では,言語間一般化の非直感的な新規ドライバである言語不均衡について検討する。
学習中に支配的な言語が存在することが、あまり頻度の低い言語の性能を高めることを観察する。
分析を実言語に拡張するにつれ、頻繁な言語は依然として恩恵を受けていますが、言語不均衡が言語間の一般化を引き起こすかどうかは決定的ではありません。
- 参考スコア(独自算出の注目度): 57.273662221547056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multilinguality is crucial for extending recent advancements in language modelling to diverse linguistic communities. To maintain high performance while representing multiple languages, multilingual models ideally align representations, allowing what is learned in one language to generalise to others. Prior research has emphasised the importance of parallel data and shared vocabulary elements as key factors for such alignment. In this study, we investigate an unintuitive novel driver of cross-lingual generalisation: language imbalance. In controlled experiments on perfectly equivalent cloned languages, we observe that the existence of a predominant language during training boosts the performance of less frequent languages and leads to stronger alignment of model representations across languages. Furthermore, we find that this trend is amplified with scale: with large enough models or long enough training, we observe that bilingual training data with a 90/10 language split yields better performance on both languages than a balanced 50/50 split. Building on these insights, we design training schemes that can improve performance in all cloned languages, even without altering the training data. As we extend our analysis to real languages, we find that infrequent languages still benefit from frequent ones, yet whether language imbalance causes cross-lingual generalisation there is not conclusive.
- Abstract(参考訳): 言語モデリングの最近の進歩を多様な言語コミュニティに拡張するために、多言語性は不可欠である。
複数の言語を表現しながら高いパフォーマンスを維持するために、多言語モデルは表現を理想的に整列させ、ある言語で学んだことを他の言語に一般化させる。
先行研究は、このようなアライメントの鍵となる要素として、並列データと共有語彙要素の重要性を強調してきた。
本研究では,言語間一般化の非直感的な新規ドライバである言語不均衡について検討する。
完全同値なクローン言語に関する制御実験では、トレーニング中の支配的な言語の存在が、あまり頻度の低い言語の性能を高め、言語間のモデル表現の整合性を高めることが観察された。
さらに、この傾向は規模によって増幅されていることが判明した: 十分に大きなモデルや十分なトレーニングがある場合、90/10言語分割によるバイリンガルトレーニングデータがバランスの取れた50/50言語分割よりも、両言語のパフォーマンスが向上する。
これらの知見に基づいて、トレーニングデータを変更することなく、すべてのクローン言語のパフォーマンスを向上させるトレーニングスキームを設計する。
しかし、言語不均衡が言語間の一般化を引き起こすか否かは決定的ではない。
関連論文リスト
- LlamaTurk: Adapting Open-Source Generative Large Language Models for Low-Resource Language [2.9914612342004503]
本研究は、主に英語で訓練された大規模な言語モデルを低リソース言語に適応させることにより、代替的な解決策を探求する。
継続訓練,命令細調整,タスク特化細調整,語彙拡張など,さまざまな戦略を評価する。
その結果、継続学習は、難易度スコアに反映されるような言語理解を向上し、タスク固有のチューニングは、一般的に下流タスクのパフォーマンスを向上することを示した。
論文 参考訳(メタデータ) (2024-05-13T13:41:59Z) - Improving In-context Learning of Multilingual Generative Language Models with Cross-lingual Alignment [42.624862172666624]
本稿では,一対の翻訳文を利用する単純な言語間アライメントフレームワークを提案する。
多言語コントラスト学習を通じて、異なる言語にまたがる内部文表現を整合させる。
実験結果から,事前学習トークンが0.1文未満であっても,アライメントフレームワークは生成言語モデルの言語間相互性を大幅に向上させることが明らかとなった。
論文 参考訳(メタデータ) (2023-11-14T11:24:08Z) - Language Chameleon: Transformation analysis between languages using
Cross-lingual Post-training based on Pre-trained language models [4.731313022026271]
本研究では,1つの低リソース言語に着目し,言語横断後学習(XPT)を用いた広範囲な評価と探索実験を行う。
結果から,XPTは桁違いのデータ量で訓練された単言語モデルに匹敵する性能を示した。
論文 参考訳(メタデータ) (2022-09-14T05:20:52Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
本研究では,多言語事前学習プロセスのダイナミクスについて検討する。
我々は,XLM-Rプレトレーニング全体から抽出したチェックポイントを,一連の言語的タスクを用いて探索する。
分析の結果,より複雑なものよりも低レベルな言語スキルが得られ,早期に高い言語性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-05-24T03:35:00Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
本稿では,構成順序,構成,単語共起の3つの言語特性について検討する。
我々の主な結論は、構成順序と単語共起の寄与は限定的である一方、構成は言語間移動の成功にとってより重要であるということである。
論文 参考訳(メタデータ) (2022-03-16T07:09:35Z) - A Massively Multilingual Analysis of Cross-linguality in Shared
Embedding Space [61.18554842370824]
言語間モデルでは、多くの異なる言語に対する表現は同じ空間に存在している。
我々は,bitext検索性能の形式で,言語間アライメントのタスクベース尺度を計算した。
我々はこれらのアライメント指標の潜在的な予測因子として言語的、準言語的、および訓練関連の特徴について検討する。
論文 参考訳(メタデータ) (2021-09-13T21:05:37Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。