Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling
- URL: http://arxiv.org/abs/2404.08482v1
- Date: Fri, 12 Apr 2024 14:02:57 GMT
- Title: Floquet-driven crossover from density-assisted tunneling to enhanced pair tunneling
- Authors: Nick Klemmer, Janek Fleper, Valentin Jonas, Ameneh Sheikhan, Corinna Kollath, Michael Köhl, Andrea Bergschneider,
- Abstract summary: We show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate.
This opens possibilities to realize models with explicit pair tunneling in ultracold atomic systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the experimental control of pair tunneling in a double-well potential using Floquet engineering. We demonstrate a crossover from a regime with density-assisted tunneling to dominant pair tunneling by tuning the effective interactions. Furthermore, we show that the pair tunneling rate can be enhanced not only compared to the Floquet-reduced single-particle tunneling but even beyond the static superexchange rate, while keeping the effective interaction in a relevant range. This opens possibilities to realize models with explicit pair tunneling in ultracold atomic systems.
Related papers
- Many-body tunneling in a double-well potential [0.0]
We present a novel approach for evaluating Wannier functions, offering a new perspective on their role in many-body systems.
We address nonstandard Hubbard terms and demonstrate their critical influence on many-body dynamics.
Our findings have important implications for phenomena like superconductivity in twisted bilayer graphene and metal-insulator transitions.
arXiv Detail & Related papers (2024-09-06T14:36:31Z) - Chaos-Assisted Dynamical Tunneling in Flat Band Superwires [4.756578228865389]
Electrons can navigate along channels we call superwires, gently guided without brute force confinement.
Quantum properties of superwires give rise to elastic dynamical tunneling, linking disjoint regions of the corresponding classical phase space.
We quantify tunneling rates across various lattice configurations, and demonstrate the tunneling can be suppressed in a controlled fashion.
arXiv Detail & Related papers (2024-04-29T19:38:07Z) - Tunneling dynamics of $^{164}$Dy supersolids and droplets [0.0]
tunneling dynamics of a magnetic $164$Dy quantum gas in an elongated or pancake skewed double-well trap is investigated.
In the elongated trap and for sufficiently large offset, the different configurations exhibit collective macroscopic tunneling.
arXiv Detail & Related papers (2024-01-08T08:17:58Z) - Probing flux and charge noise with macroscopic resonant tunneling [45.36850110238202]
We measure rates of incoherent tunneling from the lowest energy state in the initial well to the ground.
We develop a theoretical model that allows us to extract information about flux and charge noise within one experimental setup.
arXiv Detail & Related papers (2022-10-04T16:15:34Z) - Influence of imperfections on tunneling rate in $\delta$-layer junctions [0.0]
We investigate the influence of imperfections in phosphorous $delta$-layer tunnel junctions in silicon.
A single charged impurity in the tunnel gap can alter the tunneling rate by more than an order of magnitude.
arXiv Detail & Related papers (2022-09-22T23:08:05Z) - Space-time resolved quantum field approach to Klein tunneling dynamics
across a finite barrier [0.0]
We find that no particle actually tunnels through a finite supercritical barrier, even in the case of resonant tunneling.
The transmission is instead mediated by modulations in pair production rates, at each edge of the barrier.
arXiv Detail & Related papers (2022-05-30T14:13:15Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Probing defect densities at the edges and inside Josephson junctions of
superconducting qubits [58.720142291102135]
Tunneling defects in disordered materials form spurious two-level systems.
For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit.
We investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction.
arXiv Detail & Related papers (2021-08-14T15:01:35Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.