Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
- URL: http://arxiv.org/abs/2404.08483v4
- Date: Mon, 22 Jul 2024 10:30:21 GMT
- Title: Semantic Communication for Cooperative Multi-Task Processing over Wireless Networks
- Authors: Ahmad Halimi Razlighi, Carsten Bockelmann, Armin Dekorsy,
- Abstract summary: We introduce the concept of a "semantic source", allowing multiple semantic interpretations from a single observation.
We formulated an end-to-end optimization problem taking into account the communication channel.
Our findings highlight that cooperative multi-tasking is not always beneficial.
- Score: 8.766411351797885
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigated semantic communication for multi-task processing using an information-theoretic approach. We introduced the concept of a "semantic source", allowing multiple semantic interpretations from a single observation. We formulated an end-to-end optimization problem taking into account the communication channel, maximizing mutual information (infomax) to design the semantic encoding and decoding process exploiting the statistical relations between semantic variables. To solve the problem we perform data-driven deep learning employing variational approximation techniques. Our semantic encoder is divided into a common unit and multiple specific units to facilitate cooperative multi-task processing. Simulation results demonstrate the effectiveness of our proposed semantic source and system design when statistical relationships exist, comparing cooperative task processing with independent task processing. However, our findings highlight that cooperative multi-tasking is not always beneficial, emphasizing the importance of statistical relationships between tasks and indicating the need for further investigation into the semantically processing of multiple tasks.
Related papers
- Cooperative and Collaborative Multi-Task Semantic Communication for Distributed Sources [8.22548024950756]
We build on the cooperative multi-task processing introduced in [1], which divides the encoder into a common unit (CU) and multiple specific units (SUs)
We propose an SemCom system that supports multi-task processing through cooperation on the transmitter side via split structure and collaboration on the receiver side.
arXiv Detail & Related papers (2024-11-04T15:07:48Z) - RepVF: A Unified Vector Fields Representation for Multi-task 3D Perception [64.80760846124858]
This paper proposes a novel unified representation, RepVF, which harmonizes the representation of various perception tasks.
RepVF characterizes the structure of different targets in the scene through a vector field, enabling a single-head, multi-task learning model.
Building upon RepVF, we introduce RFTR, a network designed to exploit the inherent connections between different tasks.
arXiv Detail & Related papers (2024-07-15T16:25:07Z) - Leveraging knowledge distillation for partial multi-task learning from multiple remote sensing datasets [2.1178416840822023]
Partial multi-task learning where training examples are annotated for one of the target tasks is a promising idea in remote sensing.
This paper proposes using knowledge distillation to replace the need of ground truths for the alternate task and enhance the performance of such approach.
arXiv Detail & Related papers (2024-05-24T09:48:50Z) - Distribution Matching for Multi-Task Learning of Classification Tasks: a
Large-Scale Study on Faces & Beyond [62.406687088097605]
Multi-Task Learning (MTL) is a framework, where multiple related tasks are learned jointly and benefit from a shared representation space.
We show that MTL can be successful with classification tasks with little, or non-overlapping annotations.
We propose a novel approach, where knowledge exchange is enabled between the tasks via distribution matching.
arXiv Detail & Related papers (2024-01-02T14:18:11Z) - Contrastive Multi-Task Dense Prediction [11.227696986100447]
A core objective in design is how to effectively model cross-task interactions to achieve a comprehensive improvement on different tasks.
We introduce feature-wise contrastive consistency into modeling the cross-task interactions for multi-task dense prediction.
We propose a novel multi-task contrastive regularization method based on the consistency to effectively boost the representation learning of the different sub-tasks.
arXiv Detail & Related papers (2023-07-16T03:54:01Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - Exploring Relational Context for Multi-Task Dense Prediction [76.86090370115]
We consider a multi-task environment for dense prediction tasks, represented by a common backbone and independent task-specific heads.
We explore various attention-based contexts, such as global and local, in the multi-task setting.
We propose an Adaptive Task-Relational Context module, which samples the pool of all available contexts for each task pair.
arXiv Detail & Related papers (2021-04-28T16:45:56Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
We consider a problem known as multi-task learning, consisting of fitting a set of regression functions intended for solving different tasks.
In our novel formulation, we couple the parameters of these functions, so that they learn in their task specific domains while staying close to each other.
This facilitates cross-fertilization in which data collected across different domains help improving the learning performance at each other task.
arXiv Detail & Related papers (2020-10-24T21:35:57Z) - Multi-Task Learning with Deep Neural Networks: A Survey [0.0]
Multi-task learning (MTL) is a subfield of machine learning in which multiple tasks are simultaneously learned by a shared model.
We give an overview of multi-task learning methods for deep neural networks, with the aim of summarizing both the well-established and most recent directions within the field.
arXiv Detail & Related papers (2020-09-10T19:31:04Z) - Small Towers Make Big Differences [59.243296878666285]
Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
arXiv Detail & Related papers (2020-08-13T10:45:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.