論文の概要: Beyond One-Size-Fits-All: Adapting Counterfactual Explanations to User Objectives
- arxiv url: http://arxiv.org/abs/2404.08721v1
- Date: Fri, 12 Apr 2024 13:11:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 19:02:07.912057
- Title: Beyond One-Size-Fits-All: Adapting Counterfactual Explanations to User Objectives
- Title(参考訳): One-Size-Fits-Allを超えて: ユーザオブジェクトへの非現実的説明の適応
- Authors: Orfeas Menis Mastromichalakis, Jason Liartis, Giorgos Stamou,
- Abstract要約: Counterfactual Explanations (CFE)は、機械学習アルゴリズムの意思決定プロセスに関する洞察を提供する。
既存の文献は、様々なアプリケーションやドメインにわたるユーザのニーズや目的を見落としていることが多い。
我々は,ユーザの目的や対象アプリケーションに基づいて,所望の特性の変化を認識することによって,CFEの微妙な理解を提唱する。
- 参考スコア(独自算出の注目度): 2.3369294168789203
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Explainable Artificial Intelligence (XAI) has emerged as a critical area of research aimed at enhancing the transparency and interpretability of AI systems. Counterfactual Explanations (CFEs) offer valuable insights into the decision-making processes of machine learning algorithms by exploring alternative scenarios where certain factors differ. Despite the growing popularity of CFEs in the XAI community, existing literature often overlooks the diverse needs and objectives of users across different applications and domains, leading to a lack of tailored explanations that adequately address the different use cases. In this paper, we advocate for a nuanced understanding of CFEs, recognizing the variability in desired properties based on user objectives and target applications. We identify three primary user objectives and explore the desired characteristics of CFEs in each case. By addressing these differences, we aim to design more effective and tailored explanations that meet the specific needs of users, thereby enhancing collaboration with AI systems.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、AIシステムの透明性と解釈可能性を高めることを目的とした研究の重要領域として登場した。
Counterfactual Explanations (CFE)は、特定の要因が異なる別のシナリオを探索することによって、機械学習アルゴリズムの意思決定プロセスに関する貴重な洞察を提供する。
XAIコミュニティでCFEの人気が高まっているにもかかわらず、既存の文献は、様々なアプリケーションやドメインにわたるユーザのさまざまなニーズや目的を見落とし、異なるユースケースに適切に対処する適切な説明が欠如している。
本稿では,ユーザの目的と対象アプリケーションに基づいて,所望の特性の変化を認識することによって,CFEの微妙な理解を提唱する。
我々は3つの主要なユーザ目標を特定し、それぞれのケースにおいてCFEの望ましい特性を探索する。
これらの違いに対処することで、ユーザのニーズを満たすより効率的で適切な説明を設計し、AIシステムとのコラボレーションを強化することを目指している。
関連論文リスト
- Tell me more: Intent Fulfilment Framework for Enhancing User Experiences in Conversational XAI [0.6333053895057925]
本稿では,ユーザのXAIニーズに対して,異なるタイプの説明が協調的にどのように適合するかを考察する。
Intent Fulfilment Framework (IFF)を導入した。
Explanation Experience Dialogue Model は IFF と "Explanation Followups" を統合し,対話型インターフェースを提供する。
論文 参考訳(メタデータ) (2024-05-16T21:13:43Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
対実的説明(CE)は、XAIで理解可能な説明を生成するための有効な解決策として浮上している。
UFCEは、アクション可能な機能のサブセットで最小限の変更を決定するために、ユーザー制約を含めることができる。
UFCEは、textitproximity(英語版)、textitsparsity(英語版)、textitfeasibility(英語版)の2つのよく知られたCEメソッドより優れている。
論文 参考訳(メタデータ) (2024-02-26T20:09:44Z) - Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal [0.0]
本研究は、説明可能な機械学習(XML)における既存の研究の徹底的なレビューを行う。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供することです。
本稿では,ユーザとその所望のプロパティを考慮に入れたマッピング関数を提案し,XAI手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T01:06:38Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
自動対物生成は、生成した対物インスタンスのいくつかの側面を考慮すべきである。
本稿では, 対実例生成のための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2022-05-20T15:02:53Z) - "There Is Not Enough Information": On the Effects of Explanations on
Perceptions of Informational Fairness and Trustworthiness in Automated
Decision-Making [0.0]
自動意思決定システム(ADS)は、連続的な意思決定にますます利用されている。
我々は,情報の公平さに対する人々の認識を評価するために,人間による研究を行う。
定性的フィードバックの包括的分析は、説明のために人々のデシラタに光を当てる。
論文 参考訳(メタデータ) (2022-05-11T20:06:03Z) - Let's Go to the Alien Zoo: Introducing an Experimental Framework to
Study Usability of Counterfactual Explanations for Machine Learning [6.883906273999368]
反事実的説明(CFEs)は、心理的に根拠づけられたアプローチとして、ポストホックな説明を生み出している。
私たちは、エンゲージメントがあり、Webベースでゲームに触発された実験的なフレームワークであるAlien Zooを紹介します。
概念実証として,本手法の有効性と実用性を示す。
論文 参考訳(メタデータ) (2022-05-06T17:57:05Z) - Confounder Identification-free Causal Visual Feature Learning [84.28462256571822]
本稿では,創始者を特定する必要性を排除した,創始者同定自由因果視覚特徴学習(CICF)手法を提案する。
CICFは、フロントドア基準に基づいて異なるサンプル間の介入をモデル化し、インスタンスレベルの介入に対するグローバルスコープ干渉効果を近似する。
我々は,CICFと一般的なメタラーニング戦略MAMLの関係を明らかにするとともに,MAMLが理論的観点から機能する理由を解釈する。
論文 参考訳(メタデータ) (2021-11-26T10:57:47Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - User-Oriented Smart General AI System under Causal Inference [0.0]
汎用AIシステムは、自動化された方法で高性能で幅広いタスクを解決します。
ある個人が設計した最も一般的なaiアルゴリズムは、他の個人が考案したものとは異なる。
暗黙の知識は、タスク情報のユーザ固有の理解と個々のモデル設計の好みに依存する。
論文 参考訳(メタデータ) (2021-03-25T08:34:35Z) - Leveraging Expert Consistency to Improve Algorithmic Decision Support [62.61153549123407]
建設のギャップを狭めるために観測結果と組み合わせることができる情報源として,歴史専門家による意思決定の利用について検討する。
本研究では,データ内の各ケースが1人の専門家によって評価された場合に,専門家の一貫性を間接的に推定する影響関数に基づく手法を提案する。
本研究は, 児童福祉領域における臨床現場でのシミュレーションと実世界データを用いて, 提案手法が構成ギャップを狭めることに成功していることを示す。
論文 参考訳(メタデータ) (2021-01-24T05:40:29Z) - Optimizing Interactive Systems via Data-Driven Objectives [70.3578528542663]
本稿では,観察されたユーザインタラクションから直接目的を推測する手法を提案する。
これらの推論は、事前の知識によらず、様々な種類のユーザー行動にまたがって行われる。
本稿では,これらの推定対象を最適化するために利用する新しいアルゴリズムであるInteractive System(ISO)を紹介する。
論文 参考訳(メタデータ) (2020-06-19T20:49:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。