Detecting AI-Generated Images via CLIP
- URL: http://arxiv.org/abs/2404.08788v1
- Date: Fri, 12 Apr 2024 19:29:10 GMT
- Title: Detecting AI-Generated Images via CLIP
- Authors: A. G. Moskowitz, T. Gaona, J. Peterson,
- Abstract summary: We investigate the ability of the Contrastive Language-Image Pre-training (CLIP) architecture, pre-trained on massive internet-scale data sets, to determine if an image is AI-generated.
We fine-tune CLIP on real images and AIGI from several generative models, enabling CLIP to determine if an image is AI-generated and, if so, determine what generation method was used to create it.
Our method will significantly increase access to AIGI-detecting tools and reduce the negative effects of AIGI on society.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As AI-generated image (AIGI) methods become more powerful and accessible, it has become a critical task to determine if an image is real or AI-generated. Because AIGI lack the signatures of photographs and have their own unique patterns, new models are needed to determine if an image is AI-generated. In this paper, we investigate the ability of the Contrastive Language-Image Pre-training (CLIP) architecture, pre-trained on massive internet-scale data sets, to perform this differentiation. We fine-tune CLIP on real images and AIGI from several generative models, enabling CLIP to determine if an image is AI-generated and, if so, determine what generation method was used to create it. We show that the fine-tuned CLIP architecture is able to differentiate AIGI as well or better than models whose architecture is specifically designed to detect AIGI. Our method will significantly increase access to AIGI-detecting tools and reduce the negative effects of AIGI on society, as our CLIP fine-tuning procedures require no architecture changes from publicly available model repositories and consume significantly less GPU resources than other AIGI detection models.
Related papers
- Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We present a sanity check on whether the task of AI-generated image detection has been solved.
To quantify the generalization of existing methods, we evaluate 9 off-the-shelf AI-generated image detectors on Chameleon dataset.
We propose AIDE (AI-generated Image DEtector with Hybrid Features), which leverages multiple experts to simultaneously extract visual artifacts and noise patterns.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
The aim of this work is to explore the potential of pre-trained vision-language models (VLMs) for universal detection of AI-generated images.
We develop a lightweight detection strategy based on CLIP features and study its performance in a wide variety of challenging scenarios.
arXiv Detail & Related papers (2023-11-30T21:11:20Z) - PatchCraft: Exploring Texture Patch for Efficient AI-generated Image
Detection [39.820699370876916]
We propose a novel AI-generated image detector capable of identifying fake images created by a wide range of generative models.
A novel Smash&Reconstruction preprocessing is proposed to erase the global semantic information and enhance texture patches.
Our approach outperforms state-of-the-art baselines by a significant margin.
arXiv Detail & Related papers (2023-11-21T07:12:40Z) - Seeing is not always believing: Benchmarking Human and Model Perception
of AI-Generated Images [66.20578637253831]
There is a growing concern that the advancement of artificial intelligence (AI) technology may produce fake photos.
This study aims to comprehensively evaluate agents for distinguishing state-of-the-art AI-generated visual content.
arXiv Detail & Related papers (2023-04-25T17:51:59Z) - InvGAN: Invertible GANs [88.58338626299837]
InvGAN, short for Invertible GAN, successfully embeds real images to the latent space of a high quality generative model.
This allows us to perform image inpainting, merging, and online data augmentation.
arXiv Detail & Related papers (2021-12-08T21:39:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.