DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps
- URL: http://arxiv.org/abs/2502.08821v1
- Date: Wed, 12 Feb 2025 22:24:49 GMT
- Title: DejAIvu: Identifying and Explaining AI Art on the Web in Real-Time with Saliency Maps
- Authors: Jocelyn Dzuong,
- Abstract summary: We introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability.
Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable.
- Score: 0.0
- License:
- Abstract: The recent surge in advanced generative models, such as diffusion models and generative adversarial networks (GANs), has led to an alarming rise in AI-generated images across various domains on the web. While such technologies offer benefits such as democratizing artistic creation, they also pose challenges in misinformation, digital forgery, and authenticity verification. Additionally, the uncredited use of AI-generated images in media and marketing has sparked significant backlash from online communities. In response to this, we introduce DejAIvu, a Chrome Web extension that combines real-time AI-generated image detection with saliency-based explainability while users browse the web. Using an ONNX-optimized deep learning model, DejAIvu automatically analyzes images on websites such as Google Images, identifies AI-generated content using model inference, and overlays a saliency heatmap to highlight AI-related artifacts. Our approach integrates efficient in-browser inference, gradient-based saliency analysis, and a seamless user experience, ensuring that AI detection is both transparent and interpretable. We also evaluate DejAIvu across multiple pretrained architectures and benchmark datasets, demonstrating high accuracy and low latency, making it a practical and deployable tool for enhancing AI image accountability. The code for this system can be found at https://github.com/Noodulz/dejAIvu.
Related papers
- ANID: How Far Are We? Evaluating the Discrepancies Between AI-synthesized Images and Natural Images through Multimodal Guidance [19.760989919485894]
We introduce an AI-Natural Image Discrepancy Evaluation benchmark aimed at addressing the critical question: textithow far are AI-generated images from truly realistic images?
We have constructed a large-scale multimodal dataset, the Distinguishing Natural and AI-generated Images (DNAI) dataset, which includes over 440,000 AIGI samples generated by 8 representative models.
Our fine-grained assessment framework provides a comprehensive evaluation of the DNAI dataset across five key dimensions.
arXiv Detail & Related papers (2024-12-23T15:08:08Z) - Zero-Shot Detection of AI-Generated Images [54.01282123570917]
We propose a zero-shot entropy-based detector (ZED) to detect AI-generated images.
Inspired by recent works on machine-generated text detection, our idea is to measure how surprising the image under analysis is compared to a model of real images.
ZED achieves an average improvement of more than 3% over the SoTA in terms of accuracy.
arXiv Detail & Related papers (2024-09-24T08:46:13Z) - A Sanity Check for AI-generated Image Detection [49.08585395873425]
We propose AIDE (AI-generated Image DEtector with Hybrid Features) to detect AI-generated images.
AIDE achieves +3.5% and +4.6% improvements to state-of-the-art methods.
arXiv Detail & Related papers (2024-06-27T17:59:49Z) - Development of a Dual-Input Neural Model for Detecting AI-Generated Imagery [0.0]
It is important to develop tools that are able to detect AI-generated images.
This paper proposes a dual-branch neural network architecture that takes both images and their Fourier frequency decomposition as inputs.
Our proposed model achieves an accuracy of 94% on the CIFAKE dataset, which significantly outperforms classic ML methods and CNNs.
arXiv Detail & Related papers (2024-06-19T16:42:04Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - Large Multi-modality Model Assisted AI-Generated Image Quality Assessment [53.182136445844904]
We introduce a large Multi-modality model Assisted AI-Generated Image Quality Assessment (MA-AGIQA) model.
It uses semantically informed guidance to sense semantic information and extract semantic vectors through carefully designed text prompts.
It achieves state-of-the-art performance, and demonstrates its superior generalization capabilities on assessing the quality of AI-generated images.
arXiv Detail & Related papers (2024-04-27T02:40:36Z) - ASAP: Interpretable Analysis and Summarization of AI-generated Image Patterns at Scale [20.12991230544801]
Generative image models have emerged as a promising technology to produce realistic images.
There is growing demand to empower users to effectively discern and comprehend patterns of AI-generated images.
We develop ASAP, an interactive visualization system that automatically extracts distinct patterns of AI-generated images.
arXiv Detail & Related papers (2024-04-03T18:20:41Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
We employ machine learning techniques to discern between AI-generated and genuine images.
We refine and adapt advanced deep learning architectures like ResNet, VGGNet, and DenseNet.
The experimental results were significant, demonstrating that our optimized deep learning models outperform traditional methods.
arXiv Detail & Related papers (2024-01-14T20:00:37Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - Guiding AI-Generated Digital Content with Wireless Perception [69.51950037942518]
We introduce an integration of wireless perception with AI-generated content (AIGC) to improve the quality of digital content production.
The framework employs a novel multi-scale perception technology to read user's posture, which is difficult to describe accurately in words, and transmits it to the AIGC model as skeleton images.
Since the production process imposes the user's posture as a constraint on the AIGC model, it makes the generated content more aligned with the user's requirements.
arXiv Detail & Related papers (2023-03-26T04:39:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.