論文の概要: Assessing Economic Viability: A Comparative Analysis of Total Cost of Ownership for Domain-Adapted Large Language Models versus State-of-the-art Counterparts in Chip Design Coding Assistance
- arxiv url: http://arxiv.org/abs/2404.08850v1
- Date: Fri, 12 Apr 2024 23:37:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 18:22:57.616135
- Title: Assessing Economic Viability: A Comparative Analysis of Total Cost of Ownership for Domain-Adapted Large Language Models versus State-of-the-art Counterparts in Chip Design Coding Assistance
- Title(参考訳): 経済性の評価: チップ設計符号化支援におけるドメイン適応型大規模言語モデルの総所有コストと最先端カウンタの比較分析
- Authors: Amit Sharma, Teodor-Dumitru Ene, Kishor Kunal, Mingjie Liu, Zafar Hasan, Haoxing Ren,
- Abstract要約: 本稿では,ドメイン適応型大言語モデル (LLM) と最先端LLM (SoTA) の比較検討を行った。
- 参考スコア(独自算出の注目度): 10.364901568556435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comparative analysis of total cost of ownership (TCO) and performance between domain-adapted large language models (LLM) and state-of-the-art (SoTA) LLMs , with a particular emphasis on tasks related to coding assistance for chip design. We examine the TCO and performance metrics of a domain-adaptive LLM, ChipNeMo, against two leading LLMs, Claude 3 Opus and ChatGPT-4 Turbo, to assess their efficacy in chip design coding generation. Through a detailed evaluation of the accuracy of the model, training methodologies, and operational expenditures, this study aims to provide stakeholders with critical information to select the most economically viable and performance-efficient solutions for their specific needs. Our results underscore the benefits of employing domain-adapted models, such as ChipNeMo, that demonstrate improved performance at significantly reduced costs compared to their general-purpose counterparts. In particular, we reveal the potential of domain-adapted LLMs to decrease TCO by approximately 90%-95%, with the cost advantages becoming increasingly evident as the deployment scale expands. With expansion of deployment, the cost benefits of ChipNeMo become more pronounced, making domain-adaptive LLMs an attractive option for organizations with substantial coding needs supported by LLMs
- Abstract(参考訳): 本稿では,チップ設計におけるコーディング支援に関するタスクを中心に,ドメイン適応型大規模言語モデル (LLM) と最先端LLM (SoTA) の総所有コスト(TCO) と性能の比較分析を行った。
我々は,Claude 3 Opus と ChatGPT-4 Turbo の2つの主要な LLM に対して,ドメイン適応型 LLM である ChipNeMo の TCO と性能指標を比較し,チップ設計符号生成の有効性を評価する。
本研究は, モデルの精度, 訓練方法, 運用費の詳細な評価を通じて, 利害関係者に対して, 特定のニーズに対して最も経済的に実行可能な, 性能効率の良いソリューションを選択するための重要な情報を提供することを目的とする。
この結果から,ChipNeMoのようなドメイン適応モデルを採用することで,汎用モデルに比べて大幅なコスト削減による性能向上を図った。
特に、ドメイン適応型LCMがTCOを約90%-95%削減する可能性を明らかにし、デプロイメントの規模が拡大するにつれて、コストのアドバンテージがますます明らかになる。
デプロイメントの拡大に伴い、ChipNeMoのコストメリットはより顕著になり、ドメイン適応型LLMは、LLMがサポートしているコーディングニーズの高い組織にとって魅力的な選択肢となる。
関連論文リスト
- Read-ME: Refactorizing LLMs as Router-Decoupled Mixture of Experts with System Co-Design [59.00758127310582]
本稿では、事前学習された高密度LCMをより小さなMoEモデルに変換する新しいフレームワークRead-MEを提案する。
当社のアプローチでは,専門家の抽出にアクティベーション空間を用いる。
Read-MEは、同様のスケールの他の人気のあるオープンソース高密度モデルよりも優れています。
論文 参考訳(メタデータ) (2024-10-24T19:48:51Z) - A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL は 1B から 4B までのパラメータを持つ一連の MLLM であり、パラメータの 5% しか持たない性能の90% を達成している。
我々は,ダウンストリームタスクにおける特化モデルの転送と性能向上を可能にする,Mini-InternVLの統一適応フレームワークを開発した。
論文 参考訳(メタデータ) (2024-10-21T17:58:20Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
コスト効率の良い特定のタスクのための微調整大型言語モデル(LLM)。
本稿では,Sparse Mixture of Experts (MoE)をベースとしたLLMファインチューニングを特徴付ける。
また,クラウド上でのLCM微調整のコストを推定するための解析モデルを開発し,検証する。
論文 参考訳(メタデータ) (2024-08-08T16:26:07Z) - CEBench: A Benchmarking Toolkit for the Cost-Effectiveness of LLM Pipelines [29.25579967636023]
CEBenchは、オンラインの大規模言語モデルをベンチマークするためのオープンソースのツールキットである。
LLMデプロイメントに必要な支出と有効性の間の重要なトレードオフに焦点を当てている。
この能力は、コストへの影響を最小限にしつつ、有効性を最大化することを目的とした重要な意思決定プロセスをサポートします。
論文 参考訳(メタデータ) (2024-06-20T21:36:00Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
大規模言語モデル(LLM)における費用効率の高いクエリ割り当て問題に対処するフレームワークを提案する。
当社のフレームワークであるOpsLLMは、ユーザに対して、予算の制約やパフォーマンスの優先事項に合わせて、選択可能なさまざまな最適なソリューションを提供します。
OptLLMの有効性を評価するため,テキスト分類,質問応答,感情分析,推論,ログ解析など,さまざまなタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-24T01:05:37Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - Large Language Models for Supply Chain Optimization [4.554094815136834]
大規模言語モデル(LLM)がサプライチェーンの自動化と人間の理解と信頼のギャップを埋めるのにどのように役立つかを検討する。
我々はOptiGuideを設計する。これは平易なテキストで入力クエリとして受け付け、基礎となる結果に関する洞察を出力するフレームワークです。
当社のフレームワークがMicrosoftのクラウドサプライチェーン内の実際のサーバ配置シナリオに与える影響を実演する。
論文 参考訳(メタデータ) (2023-07-08T01:42:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。