論文の概要: Compass: Large Multilingual Language Model for South-east Asia
- arxiv url: http://arxiv.org/abs/2404.09220v1
- Date: Sun, 14 Apr 2024 11:48:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 14:58:08.922224
- Title: Compass: Large Multilingual Language Model for South-east Asia
- Title(参考訳): コンパス:東南アジアにおける大規模多言語言語モデル
- Authors: Sophia Maria,
- Abstract要約: CompassLLMは東南アジアの言語に特化した多言語モデルである。
我々のモデルはインドネシア語のような東南アジアの言語で優れた性能を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models have exhibited significant proficiency in languages endowed with extensive linguistic resources, such as English and Chinese. Nevertheless, their effectiveness notably diminishes when applied to languages characterized by limited linguistic resources, particularly within the Southeast Asian linguistic landscape, such as Indonesian. The scarcity of linguistic resources for these languages presents challenges associated with inadequate training, restricted vocabulary coverage, and challenging evaluation processes. In response to these exigencies, we have introduced CompassLLM, a large multilingual model specifically tailored for Southeast Asian languages, with the primary aim of supporting the developmental requirements of Shopee. Our methodology encompasses several key strategies. To progressively enhance multilingual proficiencies, we implemented a multi-stage pre-training strategy integrated with curriculum learning, gradually intensifying the focus on low-resource languages. Concurrently, to better accommodate low-resource human instructions, we curated and generated a repository of high-quality multilingual human instructions, culminating the CompassLLM-SFT model through supervised instruction fine-tuning. Finally, to reinforce the model's alignment with human preference behaviors, we have embraced the principle of Direct Preference Optimization (DPO) to obtain CompassLLM-DPO model. Preliminary evaluation of the CompassLLM model yields promising results, with our model surpassing benchmark models like Vicuna-7b-v1.5, Sealion, Falcon and SeaLLM, across diverse evaluation tasks, as verified through both automated and human-driven assessments. Notably, our model exhibits its superior performance in South-east Asia languages, such as Indonesian language.
- Abstract(参考訳): 大規模な言語モデルは、英語や中国語などの広範な言語資源が与えられた言語において、非常に熟練している。
それにもかかわらず、インドネシア語のような東南アジアの言語環境の中で、限られた言語資源によって特徴づけられる言語に適用された場合、その効果は顕著に減少する。
これらの言語に対する言語資源の不足は、不十分な訓練、制限された語彙カバレッジ、そして挑戦的な評価プロセスに関連する課題を提示する。
そこで我々は,東南アジア言語に特化した多言語モデルであるCompassLLMを紹介した。
我々の方法論はいくつかの重要な戦略を含んでいる。
多言語習熟度を徐々に向上させるため,カリキュラム学習と統合された多段階事前学習戦略を導入し,低リソース言語への焦点を徐々に強化した。
同時に、低リソースな人的命令をよりよく適応するために、我々は高品質な多言語人的命令のリポジトリを作成し、教師あり命令の微調整によってCompassLLM-SFTモデルを完成させた。
最後に、モデルと人間の嗜好行動との整合性を強化するために、コンパスLLM-DPOモデルを得るための直接選好最適化(DPO)の原則を取り入れた。
CompassLLMモデルの予備的な評価は,Vicuna-7b-v1.5, Sealion, Falcon, SeaLLMといったベンチマークモデルを超える有望な結果をもたらす。
特にインドネシア語などの東南アジアの言語では,本モデルの方が優れた性能を示す。
関連論文リスト
- Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - SeaLLMs 3: Open Foundation and Chat Multilingual Large Language Models for Southeast Asian Languages [77.75535024869224]
東南アジアの言語に合わせたSeaLLMsモデルファミリーの最新版SeaLLMs 3を紹介します。
SeaLLMs 3は、英語、中国語、インドネシア語、ベトナム語、タイ語、タガログ語、マレー語、ビルマ語、クメール語、ラオス語、タミル語、ジャワ語など、この地域で話される言語全般をカバーすることで、このギャップを埋めることを目指している。
我々のモデルは、世界的知識、数学的推論、翻訳、命令の追従といったタスクに優れており、同様の大きさのモデルで最先端の性能を達成する。
論文 参考訳(メタデータ) (2024-07-29T03:26:22Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Targeted Multilingual Adaptation for Low-resource Language Families [17.212424929235624]
我々は、事前学習されたモデルを言語族に適応させるためのベストプラクティスについて研究する。
適応モデルは単言語および多言語ベースラインを大きく上回る。
低リソース言語は、高リソース言語のパフォーマンスをほとんど犠牲にすることなく、トレーニング中に積極的にアップサンプリングできる。
論文 参考訳(メタデータ) (2024-05-20T23:38:06Z) - Bridging the Bosphorus: Advancing Turkish Large Language Models through Strategies for Low-Resource Language Adaptation and Benchmarking [1.3716808114696444]
大規模言語モデル(LLM)は様々な分野において重要になってきており、表現不足の言語における高品質なモデルの緊急性を強調している。
本研究では、データ不足、モデル選択、評価、計算制限など、低リソース言語が直面する固有の課題について検討する。
論文 参考訳(メタデータ) (2024-05-07T21:58:45Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - SeaLLMs -- Large Language Models for Southeast Asia [76.50157503379086]
東南アジア(SEA)言語に焦点を当てた,革新的な言語モデルであるSeaLLMを紹介した。
SeaLLMはLlama-2モデルに基づいて構築され、さらに拡張語彙、特殊命令、アライメントチューニングによる事前訓練が継続されている。
包括的評価により,SeaLLM-13bモデルは言語タスクやアシスタントスタイルの指示追従能力に優れた性能を示した。
論文 参考訳(メタデータ) (2023-12-01T17:17:56Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Automatic Readability Assessment for Closely Related Languages [6.233117407988574]
この研究は、相互の知性や言語関連度などの言語的側面が、低リソース環境でのARAをどのように改善できるかに焦点を当てる。
フィリピン・タガログ語・ビコル語・セブアーノ語の3言語で書かれた短い記事を収集し,読みやすさ評価モデルを構築した。
本研究は, 相互信頼度の高い言語にn-gram重み付けを適用した新たな機能であるCrossNGOの導入により, ARAモデルの性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2023-05-22T20:42:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。