論文の概要: Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
- arxiv url: http://arxiv.org/abs/2404.09496v1
- Date: Mon, 15 Apr 2024 06:33:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:19:30.732801
- Title: Towards Collaborative Autonomous Driving: Simulation Platform and End-to-End System
- Title(参考訳): 協調型自動運転を目指して:シミュレーションプラットフォームとエンド・ツー・エンドシステム
- Authors: Genjia Liu, Yue Hu, Chenxin Xu, Weibo Mao, Junhao Ge, Zhengxiang Huang, Yifan Lu, Yinda Xu, Junkai Xia, Yafei Wang, Siheng Chen,
- Abstract要約: 自動運転車(V2X-AD)は、より安全な運転ソリューションを提供する大きな可能性を秘めている。
本稿では,協調自動運転のための総合シミュレーションプラットフォームであるV2Xverseを紹介する。
私たちは、新しいエンドツーエンドのコラボレーティブドライブシステムであるCoDrivingを紹介します。
- 参考スコア(独自算出の注目度): 35.447617290190294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vehicle-to-everything-aided autonomous driving (V2X-AD) has a huge potential to provide a safer driving solution. Despite extensive researches in transportation and communication to support V2X-AD, the actual utilization of these infrastructures and communication resources in enhancing driving performances remains largely unexplored. This highlights the necessity of collaborative autonomous driving: a machine learning approach that optimizes the information sharing strategy to improve the driving performance of each vehicle. This effort necessitates two key foundations: a platform capable of generating data to facilitate the training and testing of V2X-AD, and a comprehensive system that integrates full driving-related functionalities with mechanisms for information sharing. From the platform perspective, we present V2Xverse, a comprehensive simulation platform for collaborative autonomous driving. This platform provides a complete pipeline for collaborative driving. From the system perspective, we introduce CoDriving, a novel end-to-end collaborative driving system that properly integrates V2X communication over the entire autonomous pipeline, promoting driving with shared perceptual information. The core idea is a novel driving-oriented communication strategy. Leveraging this strategy, CoDriving improves driving performance while optimizing communication efficiency. We make comprehensive benchmarks with V2Xverse, analyzing both modular performance and closed-loop driving performance. Experimental results show that CoDriving: i) significantly improves the driving score by 62.49% and drastically reduces the pedestrian collision rate by 53.50% compared to the SOTA end-to-end driving method, and ii) achieves sustaining driving performance superiority over dynamic constraint communication conditions.
- Abstract(参考訳): 自動運転車(V2X-AD)は、より安全な運転ソリューションを提供する大きな可能性を秘めている。
V2X-ADをサポートするための輸送と通信に関する広範な研究にもかかわらず、これらのインフラと通信資源の実際の利用は、運転性能の向上に大きく貢献している。
情報共有戦略を最適化し、各車両の運転性能を改善する機械学習アプローチである。
この取り組みには、V2X-ADのトレーニングとテストを容易にするためにデータを生成するプラットフォームと、完全な運転関連機能と情報共有のメカニズムを統合する包括的なシステムという、2つの重要な基盤が必要である。
プラットフォームの観点からは、協調自動運転のための総合シミュレーションプラットフォームであるV2Xverseを紹介する。
このプラットフォームは、協調運転のための完全なパイプラインを提供する。
システムの観点からは、自律パイプライン全体のV2X通信を適切に統合し、共有知覚情報による運転を促進する、新しいエンドツーエンド協調運転システムであるCoDrivingを紹介する。
中心となる考え方は、新しい運転指向のコミュニケーション戦略である。
この戦略を活用することで、CoDrivingは通信効率を最適化しながら、運転性能を改善します。
V2Xverseで包括的なベンチマークを行い、モジュール性能と閉ループ駆動性能の両方を分析した。
実験結果からCoDrivingが判明した。
i) 運転スコアを62.49%改善し、SOTAのエンドツーエンド運転法と比較して、歩行者衝突率を53.50%大幅に低下させ、
二 動的制約通信条件よりも運転性能の維持を図ること。
関連論文リスト
- V2X-VLM: End-to-End V2X Cooperative Autonomous Driving Through Large Vision-Language Models [13.716889927164383]
本稿では、V2Xシステムと大型ビジョン言語モデル(VLM)を備えた、革新的なE2E車両・インフラ協調自動運転(VICAD)フレームワークであるV2X-VLMを紹介する。
V2X-VLMは、車両に搭載されたカメラ、インフラセンサー、およびテキスト情報からの多モデルデータを統合することで、状況認識、意思決定、究極の軌道計画を強化するように設計されている。
DAIR-V2Xデータセットの評価は、V2X-VLMが最先端の協調運転法より優れていることを示している。
論文 参考訳(メタデータ) (2024-08-17T16:42:13Z) - Unified End-to-End V2X Cooperative Autonomous Driving [21.631099800753795]
UniE2EV2Xは、V2Xに統合されたエンドツーエンドの自動運転システムで、主要な駆動モジュールを統合ネットワーク内で統合する。
このフレームワークは変形可能な注意ベースのデータ融合戦略を採用し、車とインフラの協調を効果的に促進する。
We implement the UniE2EV2X framework on the challenge DeepAccident, a simulation dataset designed for V2X collaborative driving。
論文 参考訳(メタデータ) (2024-05-07T03:01:40Z) - End-to-End Autonomous Driving through V2X Cooperation [23.44597411612664]
先駆的な協調自動運転フレームワークUniV2Xを紹介する。
UniV2Xは様々なビューにまたがるすべてのキー駆動モジュールをシームレスに統合ネットワークに統合する。
論文 参考訳(メタデータ) (2024-03-31T15:22:11Z) - DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
本稿では,V2X(Vine-to-Everything)通信を統合したLiDARを用いたエンドツーエンド自動運転手法を提案する。
提案手法は,搭載したLiDARセンサとV2X通信データを融合させることにより,不完全な部分的観測を処理することを目的としている。
論文 参考訳(メタデータ) (2023-09-26T20:26:03Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
車両混合現実(MR)メタバースでは、物理的実体と仮想実体の間の距離を克服することができる。
現実的なデータ収集と物理世界からの融合による大規模交通・運転シミュレーションは困難かつコストがかかる。
生成AIを利用して、無制限の条件付きトラフィックを合成し、シミュレーションでデータを駆動する自律運転アーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-02-16T16:54:10Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
DiDi、Uber、Lyftなどの大型配車プラットフォームは、都市内の数万台の車両を1日中数百万の乗車要求に接続している。
両課題に対処するための統合価値に基づく動的学習フレームワーク(V1D3)を提案する。
論文 参考訳(メタデータ) (2021-05-18T19:22:24Z) - Multi-Modal Fusion Transformer for End-to-End Autonomous Driving [59.60483620730437]
画像表現とLiDAR表現を注目で統合する,新しいマルチモードフュージョントランスフォーマであるTransFuserを提案する。
本手法は, 衝突を76%低減しつつ, 最先端駆動性能を実現する。
論文 参考訳(メタデータ) (2021-04-19T11:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。