論文の概要: Large language models and linguistic intentionality
- arxiv url: http://arxiv.org/abs/2404.09576v1
- Date: Mon, 15 Apr 2024 08:37:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 13:00:01.990094
- Title: Large language models and linguistic intentionality
- Title(参考訳): 大規模言語モデルと言語意図性
- Authors: Jumbly Grindrod,
- Abstract要約: 代わりに、言語モデルが言語内容の最高のメタセマンティック理論によって与えられる基準を満たすかどうかを検討するべきだと論じる。
LLMが精神的な意図性のために妥当な条件を満たせなかったことが、アウトプットを意味のないものにしていると考えるのは間違いだと私は主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Do large language models like Chat-GPT or LLaMa meaningfully use the words they produce? Or are they merely clever prediction machines, simulating language use by producing statistically plausible text? There have already been some initial attempts to answer this question by showing that these models meet the criteria for entering meaningful states according to metasemantic theories of mental content. In this paper, I will argue for a different approach - that we should instead consider whether language models meet the criteria given by our best metasemantic theories of linguistic content. In that vein, I will illustrate how this can be done by applying two such theories to the case of language models: Gareth Evans' (1982) account of naming practices and Ruth Millikan's (1984, 2004, 2005) teleosemantics. In doing so, I will argue that it is a mistake to think that the failure of LLMs to meet plausible conditions for mental intentionality thereby renders their outputs meaningless, and that a distinguishing feature of linguistic intentionality - dependency on a pre-existing linguistic system - allows for the plausible result LLM outputs are meaningful.
- Abstract(参考訳): Chat-GPTやLLaMaのような大きな言語モデルは、それらが生成する単語を有意義に使用していますか?
それとも、統計的に妥当なテキストを生成することで、言語の使用をシミュレートする、単なる巧妙な予測マシンなのだろうか?
精神内容のメタセマンティック理論に従って、これらのモデルが有意義な状態に入るための基準を満たしていることを示すことで、この問題に対処する試みは、すでにいくつかある。
本稿では,言語モデルが言語内容の最高のメタセマンティック理論によって与えられる基準を満たすか否かを考慮すべきである,という別のアプローチについて論じる。
ガレス・エヴァンス(1982年)の命名慣行の説明とルース・ミリカン(1984年、2004年、2005年)の遠隔操作論である。
このようにして、LLMが精神的な意図性に対して妥当な条件を満たせなかったことが、そのアウトプットを無意味にし、言語意図性の区別された特徴である、既存の言語システムへの依存は、LLMのアウトプットが有意義な結果をもたらすと考えるのは間違いである。
関連論文リスト
- Large Models of What? Mistaking Engineering Achievements for Human Linguistic Agency [0.11510009152620666]
我々は,Large Language Models(LLM)の言語能力に関する主張は,少なくとも2つの根拠のない仮定に基づいていると主張している。
言語完全性は、自然言語のような明瞭で完全なものが存在すると仮定する。
データ完全性の仮定は、言語がデータによって定量化され、完全にキャプチャされるという信念に依存している。
論文 参考訳(メタデータ) (2024-07-11T18:06:01Z) - LogicBench: Towards Systematic Evaluation of Logical Reasoning Ability of Large Language Models [52.03659714625452]
最近開発された大規模言語モデル (LLM) は、幅広い言語理解タスクにおいて非常によく機能することが示されている。
しかし、それらは自然言語に対して本当に「理性」があるのだろうか?
この疑問は研究の注目を集めており、コモンセンス、数値、定性的など多くの推論技術が研究されている。
論文 参考訳(メタデータ) (2024-04-23T21:08:49Z) - Language in Vivo vs. in Silico: Size Matters but Larger Language Models Still Do Not Comprehend Language on a Par with Humans [1.8434042562191815]
本研究では,人間とモデルの違いがモデルサイズに寄与するかどうかを判断する上で,モデルスケーリングが果たす役割について検討する。
アナフォラ, 中心埋め込み, 比較, 負極性を含む文法判断タスクにおいて, 3つの大言語モデル(LLM)を検証した。
モデルのサイズが大きくなると性能は向上するが、LLMは人間ほど(非)文法性に敏感ではない。
論文 参考訳(メタデータ) (2024-04-23T10:09:46Z) - Fantastic Semantics and Where to Find Them: Investigating Which Layers of Generative LLMs Reflect Lexical Semantics [50.982315553104975]
本稿では,Llama2という人気言語モデルに対する語彙意味論のボトムアップ進化について検討する。
実験の結果,下位層の表現は語彙的意味論を符号化しているが,上位層はより弱い意味帰納的帰納的帰納的帰納的帰納的帰納的帰納的帰属的帰属的帰属的帰属的存在であることがわかった。
これは、高層層がより良い語彙意味論を得るマスク言語モデリングのような差別的な目的を持つモデルとは対照的である。
論文 参考訳(メタデータ) (2024-03-03T13:14:47Z) - Evaluating Gender Bias in Large Language Models via Chain-of-Thought
Prompting [87.30837365008931]
CoT(Chain-of-Thought)プロンプトを備えた大規模言語モデル(LLM)は、計算不能なタスクでも正確なインクリメンタルな予測を行うことができる。
本研究では,LLMのステップバイステップ予測が性差に及ぼす影響について検討した。
論文 参考訳(メタデータ) (2024-01-28T06:50:10Z) - Meaning and understanding in large language models [0.0]
人工知能の生成的大言語モデル(LLM)の最近の発展は、機械による言語理解に関する伝統的な哲学的仮定を改訂する必要があるという信念を導いた。
本稿では,機械語の性能を単なる統語的操作と見なす傾向と理解のシミュレーションを批判的に評価する。
論文 参考訳(メタデータ) (2023-10-26T14:06:14Z) - Why Can Large Language Models Generate Correct Chain-of-Thoughts? [10.888196404348093]
自然言語生成に適した2階層階層型グラフィカルモデルを提案する。
我々は、LLM生成した思考の連鎖の可能性を測る魅力的な幾何学的収束率を確立する。
論文 参考訳(メタデータ) (2023-10-20T15:09:46Z) - Towards Explainable and Language-Agnostic LLMs: Symbolic Reverse
Engineering of Language at Scale [0.0]
大規模言語モデル(LLM)は、人工知能(AI)における多くの保持された信念をアンデニア・ブリーで変えたマイルストーンを達成した。
我々は、記号的な設定で言語のボトムアップリバースエンジニアリングを論じる。
論文 参考訳(メタデータ) (2023-05-30T15:15:40Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
大規模言語モデル(LLM)は、近年、自然言語と機械学習コミュニティを興奮させています。
多くの成功を収めたアプリケーションにもかかわらず、そのようなコンテキスト内機能の基盤となるメカニズムはまだ不明である。
本研究では,学習した言語トークンのテクストセマンティクスが推論過程において最も重い処理を行うと仮定する。
論文 参考訳(メタデータ) (2023-05-24T07:33:34Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
合成データを用いた体系的な実験により,すべての表現が文脈に依存しない意味を持つ言語では,自己回帰型とマスキング型の両方の言語モデルが,表現間の意味的関係をエミュレートする。
自然言語に目を向けると、特定の現象(参照不透明さ)による実験は、現在の言語モデルが自然言語の意味論をうまく表現していないという証拠を増大させる。
論文 参考訳(メタデータ) (2022-10-14T02:35:19Z) - Do Multilingual Language Models Capture Differing Moral Norms? [71.52261949766101]
大量多言語文表現は、未処理データの大規模なコーパスに基づいて訓練される。
これは、高資源言語からの道徳的判断を含む文化的価値をモデルが把握する原因となる可能性がある。
特定の言語におけるデータ不足は、ランダムで潜在的に有害な信念を発達させる可能性がある。
論文 参考訳(メタデータ) (2022-03-18T12:26:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。