論文の概要: All-in-one simulation-based inference
- arxiv url: http://arxiv.org/abs/2404.09636v2
- Date: Fri, 31 May 2024 08:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 19:33:06.315752
- Title: All-in-one simulation-based inference
- Title(参考訳): オールインワンシミュレーションに基づく推論
- Authors: Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, Jakob H. Macke,
- Abstract要約: 我々は、現在の制限を克服する新しい償却推論手法、Simformerを提案する。
Simformerは、ベンチマークタスクにおける現在の最先端の償却推論アプローチより優れています。
関数値パラメータを持つモデルに適用することができ、欠落または非構造化データによる推論シナリオを処理でき、パラメータとデータの合同分布の任意の条件をサンプリングすることができる。
- 参考スコア(独自算出の注目度): 19.41881319338419
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Amortized Bayesian inference trains neural networks to solve stochastic inference problems using model simulations, thereby making it possible to rapidly perform Bayesian inference for any newly observed data. However, current simulation-based amortized inference methods are simulation-hungry and inflexible: They require the specification of a fixed parametric prior, simulator, and inference tasks ahead of time. Here, we present a new amortized inference method -- the Simformer -- which overcomes these limitations. By training a probabilistic diffusion model with transformer architectures, the Simformer outperforms current state-of-the-art amortized inference approaches on benchmark tasks and is substantially more flexible: It can be applied to models with function-valued parameters, it can handle inference scenarios with missing or unstructured data, and it can sample arbitrary conditionals of the joint distribution of parameters and data, including both posterior and likelihood. We showcase the performance and flexibility of the Simformer on simulators from ecology, epidemiology, and neuroscience, and demonstrate that it opens up new possibilities and application domains for amortized Bayesian inference on simulation-based models.
- Abstract(参考訳): 償却ベイズ推論は、モデルシミュレーションを用いて確率的推論問題を解決するためにニューラルネットワークを訓練し、新たに観測されたデータに対してベイズ推論を迅速に実行できるようにする。
しかし、現在のシミュレーションベースの償却推論手法は、シミュレーションに長けており、非柔軟である: 固定パラメトリック事前、シミュレータ、推論タスクを事前に指定する必要がある。
ここでは、これらの制限を克服する新しい償却推論手法、Simformerを提案する。
トランスフォーマーアーキテクチャで確率的拡散モデルをトレーニングすることにより、Simformerは、現在の最先端のアモート化推論アプローチをベンチマークタスクで上回り、より柔軟になる。関数値パラメータを持つモデルに適用でき、欠落したデータや非構造データで推論シナリオを処理でき、後と後の両方を含むパラメータとデータの結合分布の任意の条件をサンプリングすることができる。
生態学,疫学,神経科学のシミュレータ上でのSimformerの性能と柔軟性を実証し,シミュレーションベースモデルによるベイズ推定に対する新たな可能性と応用領域を開くことを実証した。
関連論文リスト
- On conditional diffusion models for PDE simulations [53.01911265639582]
スパース観測の予測と同化のためのスコアベース拡散モデルについて検討した。
本稿では,予測性能を大幅に向上させる自動回帰サンプリング手法を提案する。
また,条件付きスコアベースモデルに対する新たなトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2024-10-21T18:31:04Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Neural Likelihood Approximation for Integer Valued Time Series Data [0.0]
我々は、基礎となるモデルの無条件シミュレーションを用いて訓練できるニューラルな可能性近似を構築した。
本手法は,多くの生態学的および疫学的モデルを用いて推定を行うことにより実証する。
論文 参考訳(メタデータ) (2023-10-19T07:51:39Z) - Simulation-based inference using surjective sequential neural likelihood
estimation [50.24983453990065]
主観的逐次的ニューラルネットワーク類似度推定はシミュレーションに基づく推論の新しい手法である。
データを低次元空間に埋め込むことで、SSNLは高次元データセットに適用する際の従来の可能性ベースの手法が抱えるいくつかの問題を解く。
論文 参考訳(メタデータ) (2023-08-02T10:02:38Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Variational methods for simulation-based inference [3.308743964406687]
逐次ニューラル変分推論(SNVI)は、難易度のあるモデルにおいてベイズ推論を行うためのアプローチである。
SNVIは、確率推定と変分推論を組み合わせることで、スケーラブルなシミュレーションベースの推論アプローチを実現する。
論文 参考訳(メタデータ) (2022-03-08T16:06:37Z) - Black-box Bayesian inference for economic agent-based models [0.0]
2種類のブラックボックス近似ベイズ推定法の有効性について検討した。
ニューラルネットワークに基づくブラックボックス法は, 経済シミュレーションモデルに対して, アートパラメータ推論の状態を提示する。
論文 参考訳(メタデータ) (2022-02-01T18:16:12Z) - BayesFlow can reliably detect Model Misspecification and Posterior
Errors in Amortized Bayesian Inference [0.0]
シミュレーションに基づく推論で生じるモデル誤特定のタイプを概念化し、これらの誤特定の下でベイズフローフレームワークの性能を体系的に検討する。
本稿では、潜在データ空間に確率的構造を課し、最大平均不一致(MMD)を利用して破滅的な誤特定を検知する拡張最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-16T13:25:27Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
本研究では、状態空間モデルにおいて、観測をシミュレートすることしかできず、遷移ダイナミクスが不明な潜在状態の推測と予測を行う手法を提案する。
本研究では,限られた数のシミュレーションで状態予測と状態予測を行う手法を提案する。
論文 参考訳(メタデータ) (2021-11-02T12:33:42Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。