Adaptive Self-Supervised Learning Strategies for Dynamic On-Device LLM Personalization
- URL: http://arxiv.org/abs/2409.16973v1
- Date: Wed, 25 Sep 2024 14:35:06 GMT
- Title: Adaptive Self-Supervised Learning Strategies for Dynamic On-Device LLM Personalization
- Authors: Rafael Mendoza, Isabella Cruz, Richard Liu, Aarav Deshmukh, David Williams, Jesscia Peng, Rohan Iyer,
- Abstract summary: Large language models (LLMs) have revolutionized how we interact with technology, but their personalization to individual user preferences remains a significant challenge.
We present Adaptive Self-Supervised Learning Strategies (ASLS), which utilize self-supervised learning techniques to personalize LLMs dynamically.
- Score: 3.1944843830667766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have revolutionized how we interact with technology, but their personalization to individual user preferences remains a significant challenge, particularly in on-device applications. Traditional methods often depend heavily on labeled datasets and can be resource-intensive. To address these issues, we present Adaptive Self-Supervised Learning Strategies (ASLS), which utilizes self-supervised learning techniques to personalize LLMs dynamically. The framework comprises a user profiling layer for collecting interaction data and a neural adaptation layer for real-time model fine-tuning. This innovative approach enables continuous learning from user feedback, allowing the model to generate responses that align closely with user-specific contexts. The adaptive mechanisms of ASLS minimize computational demands and enhance personalization efficiency. Experimental results across various user scenarios illustrate the superior performance of ASLS in boosting user engagement and satisfaction, highlighting its potential to redefine LLMs as highly responsive and context-aware systems on-device.
Related papers
- RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
We focus on the field of large language models (LLMs) for recommendation.
We propose RecLoRA, which incorporates a Personalized LoRA module that maintains independent LoRAs for different users.
We also design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces.
arXiv Detail & Related papers (2024-08-07T04:20:28Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning [30.25610464801255]
Large Language Models (LLMs) have highlighted the necessity of effective unlearning mechanisms to comply with data regulations and ethical AI practices.
While interest in studying LLM unlearning is growing, the impact of the choice for LLM unlearning remains unexplored.
We shed light on the significance of selection in LLM unlearning for the first time, establishing a clear connection between second-order optimization and influence unlearning.
arXiv Detail & Related papers (2024-04-28T16:31:32Z) - Context-Aware Orchestration of Energy-Efficient Gossip Learning Schemes [8.382766344930157]
We present a distributed training approach based on the combination of Gossip Learning with adaptive optimization of the learning process.
We propose a data-driven approach to OGL management that relies on optimizing in real-time for each node.
Results suggest that our approach is highly efficient and effective in a broad spectrum of network scenarios.
arXiv Detail & Related papers (2024-04-18T09:17:46Z) - Reimagining Self-Adaptation in the Age of Large Language Models [0.9999629695552195]
This paper presents a vision for using Generative AI (GenAI) to enhance the effectiveness and efficiency of architectural adaptation.
Drawing parallels with human operators, we propose that Large Language Models (LLMs) can autonomously generate context-sensitive adaptation strategies.
Our findings suggest that GenAI has significant potential to improve software systems' dynamic adaptability and resilience.
arXiv Detail & Related papers (2024-04-15T15:30:12Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
Federated learning has emerged as a promising approach for training machine learning models on decentralized data sources.
We propose a novel framework that combines federated learning with meta-learning techniques to enhance both efficiency and generalization capabilities.
arXiv Detail & Related papers (2023-12-23T08:18:22Z) - Adapting LLMs for Efficient, Personalized Information Retrieval: Methods
and Implications [0.7832189413179361]
Large Language Models (LLMs) excel in comprehending and generating human-like text.
This paper explores strategies for integrating Language Models (LLMs) with Information Retrieval (IR) systems.
arXiv Detail & Related papers (2023-11-21T02:01:01Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
We propose an alternative approach called User-Guided Response Optimization (UGRO) to combine it with a smaller task-oriented dialogue model.
This approach uses LLM as annotation-free user simulator to assess dialogue responses, combining them with smaller fine-tuned end-to-end TOD models.
Our approach outperforms previous state-of-the-art (SOTA) results.
arXiv Detail & Related papers (2023-06-16T13:04:56Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.