論文の概要: Invariant Subspace Decomposition
- arxiv url: http://arxiv.org/abs/2404.09962v1
- Date: Mon, 15 Apr 2024 17:39:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:27:57.934463
- Title: Invariant Subspace Decomposition
- Title(参考訳): 不変部分空間分解
- Authors: Margherita Lazzaretto, Jonas Peters, Niklas Pfister,
- Abstract要約: 本稿では,条件分布を時間不変成分と時間依存成分に分割する線形条件計算のための新しいフレームワークを提案する。
この分解はゼロショットと時間順応予測の両方に利用できることを示す。
本稿では, 近似的関節行列対角化法からツールを用いて自動的に分解を推定する実用的推定手法を提案する。
- 参考スコア(独自算出の注目度): 10.655331762491613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of predicting a response Y from a set of covariates X in settings where the conditional distribution of Y given X changes over time. For this to be feasible, assumptions on how the conditional distribution changes over time are required. Existing approaches assume, for example, that changes occur smoothly over time so that short-term prediction using only the recent past becomes feasible. In this work, we propose a novel invariance-based framework for linear conditionals, called Invariant Subspace Decomposition (ISD), that splits the conditional distribution into a time-invariant and a residual time-dependent component. As we show, this decomposition can be utilized both for zero-shot and time-adaptation prediction tasks, that is, settings where either no or a small amount of training data is available at the time points we want to predict Y at, respectively. We propose a practical estimation procedure, which automatically infers the decomposition using tools from approximate joint matrix diagonalization. Furthermore, we provide finite sample guarantees for the proposed estimator and demonstrate empirically that it indeed improves on approaches that do not use the additional invariant structure.
- Abstract(参考訳): X の条件分布が時間とともに変化するような環境で、共変量 X の集合から応答 Y を予測するタスクを考察する。
これを実現するためには、条件分布が時間とともにどのように変化するかという仮定が必要である。
既存のアプローチでは、例えば、変化は時間とともにスムーズに起こるので、最近の過去だけを使った短期的な予測が実現可能であると仮定している。
本研究では, 線形条件分布を時間不変成分と時間依存成分に分割する, 不変部分空間分解 (ISD) と呼ばれる, 線形条件分布の新たな不変性に基づくフレームワークを提案する。
示すように、この分解はゼロショットと時間順応予測の両方のタスク、すなわち、Y で予測したい時点において、未または少量のトレーニングデータが利用可能であるような設定に利用することができる。
本稿では, 近似的関節行列対角化法からツールを用いて自動的に分解を推定する実用的推定手法を提案する。
さらに、提案した推定器に対して有限サンプル保証を提供し、追加の不変構造を使用しないアプローチで実際に改善できることを実証的に証明する。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Conformal time series decomposition with component-wise exchangeability [41.94295877935867]
本稿では,時系列分解を取り入れた時系列予測における共形予測の新たな利用法を提案する。
本手法は,よく構造化された時系列に対して有望な結果を与えるが,より複雑なデータに対する分解ステップなどの要因によって制限される可能性がある。
論文 参考訳(メタデータ) (2024-06-24T16:23:30Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
量子レグレッション(Quantile regression)は、出力の分布における量子の実験的推定を通じてそのような間隔を得るための主要なアプローチである。
本稿では、この任意の制約を除去する量子回帰に基づく区間構成の直接的な代替として、Relaxed Quantile Regression (RQR)を提案する。
これにより、柔軟性が向上し、望ましい品質が向上することが実証された。
論文 参考訳(メタデータ) (2024-06-05T13:36:38Z) - Variational Prediction [95.00085314353436]
本稿では,変動境界を用いた後部予測分布に対する変動近似の学習手法を提案する。
このアプローチは、テスト時間の限界化コストを伴わずに、優れた予測分布を提供することができる。
論文 参考訳(メタデータ) (2023-07-14T18:19:31Z) - Sequential Predictive Conformal Inference for Time Series [16.38369532102931]
逐次データ(例えば時系列)に対する分布自由共形予測アルゴリズムを提案する。
具体的には,時系列データは交換不可能であり,既存の共形予測アルゴリズムでは適用できない性質を具体的に説明する。
論文 参考訳(メタデータ) (2022-12-07T05:07:27Z) - Conformal Inference for Online Prediction with Arbitrary Distribution
Shifts [1.2277343096128712]
我々は、データを生成する分布が時間とともに変化するオンライン環境において、予測セットを形成するという問題を考察する。
与えられた幅のすべての局所時間間隔に対して,確実に小さな後悔を伴う新規な手順を開発する。
我々は、株式市場のボラティリティと新型コロナウイルス(COVID-19)のケース数を予測するために、2つの実世界のデータセットで、我々の技術を試した。
論文 参考訳(メタデータ) (2022-08-17T16:51:12Z) - Conformal prediction set for time-series [16.38369532102931]
不確かさの定量化は複雑な機械学習手法の研究に不可欠である。
我々は,時系列の予測セットを構築するために,ERAPS(Ensemble Regularized Adaptive Prediction Set)を開発した。
ERAPSによる有意な限界被覆と条件被覆を示し、競合する手法よりも予測セットが小さい傾向にある。
論文 参考訳(メタデータ) (2022-06-15T23:48:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Multivariate Probabilistic Regression with Natural Gradient Boosting [63.58097881421937]
多変量予測分布の条件パラメータを非パラメトリックにモデル化したNatural Gradient Boosting (NGBoost) 手法を提案する。
提案手法は頑健で, 広範囲なチューニングを伴わず, 推定対象分布に対してモジュール構造であり, 既存の手法と比較して競争力がある。
論文 参考訳(メタデータ) (2021-06-07T17:44:49Z) - Online Stochastic Convex Optimization: Wasserstein Distance Variation [15.313864176694832]
滑らかな凸関数の期待値の最小値を追跡するためのオンライン近勾配法について検討する。
システムや制御文献にインスパイアされた推定・追跡誤差の概念を再考する。
我々は、強い凸性、勾配のリプシッツ性、確率分布のドリフトに対する境界を与える。
論文 参考訳(メタデータ) (2020-06-02T05:23:22Z) - Batch Stationary Distribution Estimation [98.18201132095066]
サンプル遷移の組を与えられたエルゴードマルコフ鎖の定常分布を近似する問題を考える。
与えられたデータに対する補正比関数の復元に基づく一貫した推定器を提案する。
論文 参考訳(メタデータ) (2020-03-02T09:10:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。