論文の概要: AI in the Cosmos
- arxiv url: http://arxiv.org/abs/2412.10093v1
- Date: Fri, 13 Dec 2024 12:30:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-16 15:01:44.727980
- Title: AI in the Cosmos
- Title(参考訳): 宇宙のAI
- Authors: N. Sahakyan,
- Abstract要約: 情報源分類、スペクトルエネルギー分布モデリングなど、天体物理学におけるAI応用例を強調し、生成AIによる達成可能な進歩について議論する。
AIの使用は、バイアスやエラー、AIモデルの“ブラックボックス”といった課題を導入している。
これらの問題は、人間の専門知識とドメイン固有の知識をAIアプリケーションに統合するHG-AI(Human-Guided AI)の概念を通じて解決することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Artificial intelligence (AI) is revolutionizing research by enabling the efficient analysis of large datasets and the discovery of hidden patterns. In astrophysics, AI has become essential, transforming the classification of celestial sources, data modeling, and the interpretation of observations. In this review, I highlight examples of AI applications in astrophysics, including source classification, spectral energy distribution modeling, and discuss the advancements achievable through generative AI. However, the use of AI introduces challenges, including biases, errors, and the "black box" nature of AI models, which must be resolved before their application. These issues can be addressed through the concept of Human-Guided AI (HG-AI), which integrates human expertise and domain-specific knowledge into AI applications. This approach aims to ensure that AI is applied in a robust, interpretable, and ethical manner, leading to deeper insights and fostering scientific excellence.
- Abstract(参考訳): 人工知能(AI)は、大規模なデータセットの効率的な分析と隠れたパターンの発見を可能にすることによって、研究に革命をもたらしている。
天体物理学において、AIは、天体源の分類、データモデリング、観察の解釈を変革し、不可欠なものとなっている。
本稿では、情報源分類、スペクトルエネルギー分布モデリングなど、天体物理学におけるAI応用例を取り上げ、生成的AIによって達成可能な進歩について議論する。
しかしながら、AIの使用には、バイアスやエラー、AIモデルの“ブラックボックス”といった課題が伴う。
これらの問題は、人間の専門知識とドメイン固有の知識をAIアプリケーションに統合するHG-AI(Human-Guided AI)の概念を通じて解決することができる。
このアプローチは、AIが堅牢で解釈可能で倫理的な方法で適用されることを保証することを目的としています。
関連論文リスト
- Development of an Adaptive Multi-Domain Artificial Intelligence System Built using Machine Learning and Expert Systems Technologies [0.0]
人工知能(AGI)は、人工知能(AI)研究においてしばらくの間、明白な目標であった。
AGIは、人間のように、新しい問題領域にさらされ、それを学び、推論プロセスを使って意思決定する能力を持つでしょう。
本稿では,AGIの製作に向けての歩みについて述べる。
論文 参考訳(メタデータ) (2024-06-17T07:21:44Z) - Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。