論文の概要: PD-L1 Classification of Weakly-Labeled Whole Slide Images of Breast Cancer
- arxiv url: http://arxiv.org/abs/2404.10175v1
- Date: Mon, 15 Apr 2024 23:06:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:41:41.594490
- Title: PD-L1 Classification of Weakly-Labeled Whole Slide Images of Breast Cancer
- Title(参考訳): PD-L1 乳がんの弱標識全スライド画像の分類
- Authors: Giacomo Cignoni, Cristian Scatena, Chiara Frascarelli, Nicola Fusco, Antonio Giuseppe Naccarato, Giuseppe Nicoló Fanelli, Alina Sîrbu,
- Abstract要約: 本研究の目的は,WSI分析に基づく乳癌検体におけるPD-L1陽性率の分類モデルの開発と比較である。
このタスクは、関心領域(ROI)を同定し、腫瘍をPD-L1陽性または陰性に分類する2つのフェーズから構成される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Specific and effective breast cancer therapy relies on the accurate quantification of PD-L1 positivity in tumors, which appears in the form of brown stainings in high resolution whole slide images (WSIs). However, the retrieval and extensive labeling of PD-L1 stained WSIs is a time-consuming and challenging task for pathologists, resulting in low reproducibility, especially for borderline images. This study aims to develop and compare models able to classify PD-L1 positivity of breast cancer samples based on WSI analysis, relying only on WSI-level labels. The task consists of two phases: identifying regions of interest (ROI) and classifying tumors as PD-L1 positive or negative. For the latter, two model categories were developed, with different feature extraction methodologies. The first encodes images based on the colour distance from a base color. The second uses a convolutional autoencoder to obtain embeddings of WSI tiles, and aggregates them into a WSI-level embedding. For both model types, features are fed into downstream ML classifiers. Two datasets from different clinical centers were used in two different training configurations: (1) training on one dataset and testing on the other; (2) combining the datasets. We also tested the performance with or without human preprocessing to remove brown artefacts Colour distance based models achieve the best performances on testing configuration (1) with artefact removal, while autoencoder-based models are superior in the remaining cases, which are prone to greater data variability.
- Abstract(参考訳): 乳がん治療は腫瘍におけるPD-L1陽性率の正確な定量化に依存しており、高解像度全スライド画像(WSIs)における褐色染色の形で現れる。
しかし,PD-L1染色WSIの検索と広範囲なラベル付けは病理医にとって時間を要する課題であり,特に境界線画像では再現性が低い。
本研究の目的は, 乳がん検体におけるPD-L1陽性度をWSI分析に基づいて分類し, 比較することである。
このタスクは、関心領域(ROI)を同定し、腫瘍をPD-L1陽性または陰性に分類する2つのフェーズから構成される。
後者では,特徴抽出手法の異なる2つのモデルカテゴリーが開発された。
第1は、基色からの色距離に基づいて画像を符号化する。
2つ目は、畳み込みオートエンコーダを使用して、WSIタイルの埋め込みを取得し、それらをWSIレベルの埋め込みに集約する。
両方のモデルタイプに対して、機能は下流のML分類器に入力される。
異なる臨床センターの2つのデータセットは、(1)1つのデータセットでのトレーニングと、もう1つのデータセットでのテスト、(2)2つのデータセットの組み合わせの2つの異なるトレーニング構成で使用された。
また,人手による前処理の有無を判定し,茶色のアーティファクトを除去する。 色距離に基づくモデルでは, アーティファクトを除去した上で最高の性能が得られるが, オートエンコーダによるモデルの方が, データのばらつきが大きい場合の方が優れている。
関連論文リスト
- Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency [1.4991956341367338]
本稿では,インスタンス正規化とインスタンス選択白化(ISW)を用いて,ドメインの一般化を改善する手法を提案する。
本研究では,EndoUDA BarrettのEsophagusとEndoUDA polypsの2つのデータセットに対するアプローチを評価し,その性能を3つの最先端(SOTA)手法と比較した。
論文 参考訳(メタデータ) (2024-09-19T04:10:04Z) - Dual Attention Model with Reinforcement Learning for Classification of Histology Whole-Slide Images [8.404881822414898]
デジタル全スライド画像(WSI)は一般に顕微鏡分解能で撮影され、広い空間データを包含する。
本稿では,病理医の視覚検査に触発された2つの主成分からなる新しい二重注意アプローチを提案する。
提案手法は,WSIの10%未満を高い倍率で処理しながら,最先端の手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2023-02-19T22:26:25Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
乳がんのヘマトキシリンおよびエオシン染色像におけるいくつかの分類課題に対する自己監督アルゴリズムを提案する。
本手法は,いくつかの乳がんデータセット上での最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-11-14T18:16:36Z) - Treatment classification of posterior capsular opacification (PCO) using
automated ground truths [0.0]
本稿では,PCO画像をまず分類し,必要なテキスト処理と不要なテキスト処理に分類する,深層学習(DL)に基づく手法を提案する。
モデルのトレーニングには, (i) マニュアルと (ii) 自動の2つの戦略から得られるグラウンド・真実(GT)をセットしたトレーニング画像を作成する。
論文 参考訳(メタデータ) (2022-11-11T10:36:42Z) - Stain-Adaptive Self-Supervised Learning for Histopathology Image
Analysis [3.8073142980733]
病理画像解析のためのSASSL法を提案する。
当社のSASSLはSSLフレームワークにドメイン・アドバイザリ・トレーニング・モジュールを統合して,さまざまな変換やスタイラスのバリエーションに対して堅牢な特徴を学習しています。
実験結果から,提案手法はモデルの特徴抽出能力を頑健に向上できることが示された。
論文 参考訳(メタデータ) (2022-08-08T09:54:46Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Bone Segmentation in Contrast Enhanced Whole-Body Computed Tomography [2.752817022620644]
本稿では,低線量造影による全身CTスキャンから骨骨髄領域を分離する新しい前処理技術を用いたU-netアーキテクチャについて概説する。
骨とコントラスト染料の差別化には, 適切な前処理が重要であること, 限られたデータで優れた結果が得られることを実証した。
論文 参考訳(メタデータ) (2020-08-12T10:48:38Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。