論文の概要: Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency
- arxiv url: http://arxiv.org/abs/2409.12450v1
- Date: Thu, 19 Sep 2024 04:10:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 14:52:37.416866
- Title: Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency
- Title(参考訳): 拡張型スタイルコンテンツ情報と超画素一貫性による内視鏡画像分割のための領域一般化
- Authors: Mansoor Ali Teevno, Rafael Martinez-Garcia-Pena, Gilberto Ochoa-Ruiz, Sharib Ali,
- Abstract要約: 本稿では,インスタンス正規化とインスタンス選択白化(ISW)を用いて,ドメインの一般化を改善する手法を提案する。
本研究では,EndoUDA BarrettのEsophagusとEndoUDA polypsの2つのデータセットに対するアプローチを評価し,その性能を3つの最先端(SOTA)手法と比較した。
- 参考スコア(独自算出の注目度): 1.4991956341367338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Frequent monitoring is necessary to stratify individuals based on their likelihood of developing gastrointestinal (GI) cancer precursors. In clinical practice, white-light imaging (WLI) and complementary modalities such as narrow-band imaging (NBI) and fluorescence imaging are used to assess risk areas. However, conventional deep learning (DL) models show degraded performance due to the domain gap when a model is trained on one modality and tested on a different one. In our earlier approach, we used a superpixel-based method referred to as "SUPRA" to effectively learn domain-invariant information using color and space distances to generate groups of pixels. One of the main limitations of this earlier work is that the aggregation does not exploit structural information, making it suboptimal for segmentation tasks, especially for polyps and heterogeneous color distributions. Therefore, in this work, we propose an approach for style-content disentanglement using instance normalization and instance selective whitening (ISW) for improved domain generalization when combined with SUPRA. We evaluate our approach on two datasets: EndoUDA Barrett's Esophagus and EndoUDA polyps, and compare its performance with three state-of-the-art (SOTA) methods. Our findings demonstrate a notable enhancement in performance compared to both baseline and SOTA methods across the target domain data. Specifically, our approach exhibited improvements of 14%, 10%, 8%, and 18% over the baseline and three SOTA methods on the polyp dataset. Additionally, it surpassed the second-best method (EndoUDA) on the Barrett's Esophagus dataset by nearly 2%.
- Abstract(参考訳): 消化器癌前駆体(GI)を発症する可能性に基づいて、個体を階層化するには、頻繁なモニタリングが必要である。
臨床では、危険領域を評価するために、ホワイトライトイメージング(WLI)と、狭帯域イメージング(NBI)や蛍光イメージングなどの相補的なモダリティを用いる。
しかし、従来のディープラーニング(DL)モデルは、あるモデルが1つのモダリティで訓練され、別のモデルでテストされると、ドメインギャップによって劣化した性能を示す。
従来の手法では、色と空間距離を用いてドメイン不変情報を効果的に学習し、ピクセル群を生成するために「SUPRA」と呼ばれるスーパーピクセルベースの手法を用いていた。
この初期の研究の主な制限の1つは、アグリゲーションが構造情報を利用せず、特にポリープや不均一な色分布においてセグメンテーションタスクに最適であるということである。
そこで本研究では, インスタンス正規化とインスタンス選択白化(ISW)を用いて, SUPRAと組み合わせた場合のドメイン一般化を改善する手法を提案する。
本研究では,EndoUDA BarrettのEsophagusとEndoUDA polypsの2つのデータセットに対するアプローチを評価し,その性能を3つの最先端(SOTA)手法と比較した。
本研究は,対象領域データにわたるベースライン法およびSOTA法と比較して,性能の顕著な向上を示すものである。
特に,本手法では,ベースラインよりも14%,10%,8%,および18%,ポリプデータセットでは3種類のSOTA法が改善した。
さらに、バレットの食道データセットの2番目のベストメソッド(EndoUDA)を2%近く上回った。
関連論文リスト
- Local Lesion Generation is Effective for Capsule Endoscopy Image Data Augmentation in a Limited Data Setting [0.0]
そこで我々は, 局所病変生成手法を2つ提案し, 小型医用画像データセットの増大に対処する。
最初のアプローチでは、古典的な画像処理技術であるPoisson Image Editingアルゴリズムを使用して、リアルな画像合成を生成する。
第2のアプローチでは、微調整されたイメージインペインティングGANを利用して、現実的な病変を合成する新しい生成手法を導入している。
論文 参考訳(メタデータ) (2024-11-05T13:44:25Z) - Tackling domain generalization for out-of-distribution endoscopic imaging [1.6377635288143584]
我々は、画像のスタイル情報とコンテンツ情報の両方を利用して、堅牢で一般化可能な特徴表現を保存する。
提案手法は, ベースラインであるDeepLabv3+よりも13.7%向上し, 最新のSOTA(State-of-the-art)手法よりも8%改善した。
論文 参考訳(メタデータ) (2024-10-18T18:45:13Z) - Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization [0.13108652488669734]
病理組織像における領域一般化のための新しい生成法を提案する。
本手法では,画像パッチの特徴を動的に抽出するために,生成型自己教師型視覚変換器を用いる。
2つの異なる病理組織学的データセットを用いて行った実験は,提案手法の有効性を示した。
論文 参考訳(メタデータ) (2024-07-03T08:20:27Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
ドメインギャップは、異なるフォアグラウンド(核)-バックグラウンド比によっても引き起こされる可能性があると我々は主張する。
まず、異なる領域間の劇的な画像色変化を緩和する再カラー化手法を提案する。
次に,前景-背景比の変動に頑健な新しいインスタンス正規化手法を提案する。
論文 参考訳(メタデータ) (2023-09-01T01:01:13Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
医用画像セグメンテーションのための階層化グループ理論を用いた半教師付きコントラスト学習フレームワークARCOを提案する。
まず、分散還元推定の概念を用いてARCOを構築することを提案し、特定の分散還元技術が画素/ボクセルレベルのセグメンテーションタスクにおいて特に有用であることを示す。
5つの2D/3D医療データセットと3つのセマンティックセグメンテーションデータセットのラベル設定が異なる8つのベンチマークで、我々のアプローチを実験的に検証する。
論文 参考訳(メタデータ) (2023-02-03T13:50:25Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - SUPRA: Superpixel Guided Loss for Improved Multi-modal Segmentation in
Endoscopy [1.1470070927586016]
ドメインシフトは医療画像コミュニティでよく知られた問題である。
本稿では,そのようなシナリオでDL手法が利用可能となるための領域一般化手法について検討する。
その結果,本手法では,ベースラインに比べて目標領域の20%近くの改善が得られた。
論文 参考訳(メタデータ) (2022-11-09T03:13:59Z) - AADG: Automatic Augmentation for Domain Generalization on Retinal Image
Segmentation [1.0452185327816181]
AADG(Automated Augmentation for Domain Generalization)と呼ばれるデータ操作に基づくドメイン一般化手法を提案する。
我々のAADGフレームワークは、新しいドメインを生成するデータ拡張ポリシーを効果的にサンプリングすることができる。
提案するAADGは,最先端の一般化性能を示し,既存手法より優れている。
論文 参考訳(メタデータ) (2022-07-27T02:26:01Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。