論文の概要: Simulating electronic structure on bosonic quantum computers
- arxiv url: http://arxiv.org/abs/2404.10222v3
- Date: Thu, 17 Oct 2024 18:34:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:22:29.045909
- Title: Simulating electronic structure on bosonic quantum computers
- Title(参考訳): ボゾン量子コンピュータにおける電子構造シミュレーション
- Authors: Rishab Dutta, Nam P. Vu, Chuzhi Xu, Ningyi Lyu, Alexander V. Soudackov, Xiaohan Dan, Haote Li, Chen Wang, Victor S. Batista,
- Abstract要約: 量子コンピューティングの最も有望な応用の1つは、多くのフェルミオン問題のシミュレーションである。
電子構造であるハミルトニアンは、量子ビット支援フェルミオン-クモドマッピングにより、量子モードの系に変換できることを示す。
- 参考スコア(独自算出の注目度): 35.884125235274865
- License:
- Abstract: Computations with quantum harmonic oscillators, or qumodes, represents a promising and rapidly evolving approach for quantum computing. Unlike qubits, which are two-level quantum systems, bosonic qumodes can have an infinite number of discrete levels, and can also be represented using continuous-variable bases. One of the most promising applications of quantum computing is the simulation of many-fermion problems, such as those encountered in molecular electronic structure calculations. In this work, we demonstrate how an electronic structure Hamiltonian can be transformed into a system of qumodes through qubit-assisted fermion-to-qumode mapping. After mapping the electronic structure Hamiltonian to a qubit Hamiltonian, we show how to represent it as a linear combination of bosonic gates, which can be universally controlled by qubits. We illustrate the potential of this mapping by applying it to the dihydrogen molecule, mapping the four-qubit Hamiltonian to a qubit-qumode system. The preparation of the trial qumode state and the computation of the expectation value are achieved by coupling the mapped qubit-qumode system with an ancilla qubit. This enables the formulation of bosonic variational quantum eigensolver (VQE) algorithms, such as those on hybrid qubit-qumode gates like echoed conditional displacement (ECD-VQE) or selective number-dependent arbitrary phase (SNAP-VQE), to determine the ground state of the dihydrogen molecule. In circuit quantum electrodynamics (cQED) hardware, these methods can be efficiently implemented using a microwave resonator coupled to two superconducting transmon qubits. We anticipate the reported work will pave the way for simulating many-fermion systems by leveraging the potential of hybrid qubit-qumode quantum devices.
- Abstract(参考訳): 量子調和振動子(qumodes)による計算は、量子コンピューティングにとって有望で急速に進化するアプローチである。
2レベル量子系である量子ビットとは異なり、ボソニック・クモッドは無限個の離散レベルを持つことができ、連続変数基底を用いて表すこともできる。
量子コンピューティングの最も有望な応用の1つは、分子電子構造計算で遭遇したような多くのフェルミオン問題のシミュレーションである。
本研究では,電子構造であるハミルトニアンを量子ビット支援フェルミオン-クモドマッピングにより量子モードの系に変換する方法を示す。
電子構造ハミルトニアンを立方体ハミルトニアンに写像した後、これをボゾンゲートの線型結合として表現する方法を示す。
これを二水素分子に応用し、四量子ハミルトニアンを量子モード系にマッピングすることで、このマッピングの可能性を説明する。
マッピングしたキュービット量子システムをアンシラ量子ビットに結合することにより、試行キューモード状態と期待値の計算を実現する。
これにより、エコー条件変位 (ECD-VQE) や選択数依存任意相 (SNAP-VQE) のようなハイブリッド量子軌道ゲート上のボゾン変量量子固有解法 (VQE) アルゴリズムを定式化し、二水素分子の基底状態を決定することができる。
回路量子力学(cQED)ハードウェアでは、2つの超伝導トランスモン量子ビットに結合したマイクロ波共振器を用いてこれらの手法を効率的に実装することができる。
我々は、この報告された研究が、ハイブリッド量子量子ビット量子デバイスの可能性を活用することで、多くのフェルミオンシステムのシミュレーションの道を開くことを期待する。
関連論文リスト
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
平衡伝播(Equilibrium propagation、EP)は、平衡に緩和する古典的なエネルギーモデルに導入され応用された手順である。
ここでは、EPとOnsagerの相互性を直接接続し、これを利用してEPの量子バージョンを導出する。
これは任意の量子系の可観測物の期待値に依存する損失関数の最適化に使うことができる。
論文 参考訳(メタデータ) (2024-06-10T17:22:09Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
本稿では,量子回路実行の並列化モデルを提案する。
このモデルはバックエンドに依存しない機能を利用することができ、任意のターゲットバックエンド上で並列量子回路の実行を可能にする。
論文 参考訳(メタデータ) (2024-06-05T17:16:07Z) - Simulating Chemistry on Bosonic Quantum Devices [30.89742280590898]
ボソニック量子デバイスは、量子計算を実現するための新しいアプローチを提供する。
我々は、幅広い化学問題に対処するためにボソニック量子デバイスを用いた最近の進歩と将来の可能性についてレビューする。
論文 参考訳(メタデータ) (2024-04-16T01:54:50Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
我々は多電子シュル「オーディンガー方程式」の真正解を求めるアルゴリズムを提案する。
量子シミュレータと雑音量子コンピュータの両方でアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-03-01T19:00:00Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
我々は、弱い相互作用する分子の基底状態を決定するのに理想的な電子応答の粗い粒度の表現を開発する。
本手法はIBM超伝導量子プロセッサ上で実証する。
我々は、現在の世代の量子ハードウェアは、弱い拘束力を持つが、それでも化学的にユビキタスで生物学的に重要な体制でエネルギーを探索することができると結論付けている。
論文 参考訳(メタデータ) (2021-10-03T09:56:47Z) - Variational Quantum Eigensolver for SU($N$) Fermions [0.0]
変分量子アルゴリズムは、ノイズの多い中間スケール量子コンピュータのパワーを活用することを目的としている。
変分量子固有解法を$N$成分フェルミオンの基底状態特性の研究に応用する。
提案手法は,多体系の電流ベース量子シミュレータの基礎を定式化したものである。
論文 参考訳(メタデータ) (2021-06-29T16:39:30Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
表面音響波(SAW)は、圧電材料内で動く量子ドットを生成することができる。
動的量子ドット上の電子スピン量子ビットがどのように絡み合うかを示す。
論文 参考訳(メタデータ) (2020-01-15T19:00:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。