論文の概要: Simulating electronic structure on bosonic quantum computers
- arxiv url: http://arxiv.org/abs/2404.10222v5
- Date: Tue, 11 Feb 2025 03:56:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:03:53.315964
- Title: Simulating electronic structure on bosonic quantum computers
- Title(参考訳): ボゾン量子コンピュータにおける電子構造シミュレーション
- Authors: Rishab Dutta, Nam P. Vu, Chuzhi Xu, Delmar G. A. Cabral, Ningyi Lyu, Alexander V. Soudackov, Xiaohan Dan, Haote Li, Chen Wang, Victor S. Batista,
- Abstract要約: 電子ハミルトニアンを、ボゾン量子デバイス上で解ける擬似ボゾン問題にマッピングする方法を提案する。
この研究は、多くのフェルミオン系をシミュレートする新しい経路を確立し、ハイブリッド量子ビット量子デバイスの可能性を強調する。
- 参考スコア(独自算出の注目度): 34.84696943963362
- License:
- Abstract: Quantum harmonic oscillators, or qumodes, provide a promising and versatile framework for quantum computing. Unlike qubits, which are limited to two discrete levels, qumodes have an infinite-dimensional Hilbert space, making them well-suited for a wide range of quantum simulations. In this work, we focus on the molecular electronic structure problem. We propose an approach to map the electronic Hamiltonian into a qumode bosonic problem that can be solved on bosonic quantum devices using the variational quantum eigensolver (VQE). Our approach is demonstrated through the computation of ground potential energy surfaces for benchmark model systems, including H$_2$ and the linear H$_4$ molecule. The preparation of trial qumode states and the computation of expectation values leverage universal ansatzes based on the echoed conditional displacement (ECD), or the selective number-dependent arbitrary phase (SNAP) operations. These techniques are compatible with circuit quantum electrodynamics (cQED) platforms, where microwave resonators coupled to superconducting transmon qubits can offer an efficient hardware realization. This work establishes a new pathway for simulating many-fermion systems, highlighting the potential of hybrid qubit-qumode quantum devices in advancing quantum computational chemistry.
- Abstract(参考訳): 量子調和振動子(qumodes)は量子コンピューティングのための有望で汎用的なフレームワークを提供する。
2つの離散レベルに制限されるキュービットとは異なり、キューモードは無限次元ヒルベルト空間を持ち、幅広い量子シミュレーションに適している。
本研究では分子電子構造問題に焦点をあてる。
本稿では,電子ハミルトニアンを量子固有解器(VQE)を用いてボソニック量子デバイス上で解くことのできる量子ボソニック問題にマッピングする方法を提案する。
提案手法は,H$_2$および線形H$_4$分子を含むベンチマークモデル系の基底ポテンシャルエネルギー面の計算によって実証される。
試行キューモード状態の作成と期待値の計算は、エコー条件変位(ECD)または選択数依存任意位相(SNAP)演算に基づいて普遍的アンサテイズを利用する。
これらの技術は回路量子力学(cQED)プラットフォームと互換性があり、超伝導トランスモン量子ビットに結合したマイクロ波共振器は効率的なハードウェアの実現を可能にする。
この研究は、多くのフェルミオン系をシミュレートする新しい経路を確立し、量子計算化学の進歩におけるハイブリッド量子ビット量子デバイスの可能性を強調した。
関連論文リスト
- H\"uckel Molecular Orbital Theory on a Quantum Computer: A Scalable
System-Agnostic Variational Implementation with Compact Encoding [0.0]
H"ハッケル分子軌道(HMO)理論は、π電子系の電子構造を半経験的に扱う。
量子コンピュータ上でのHMO理論のスケーラブルなシステムに依存しない実行について報告する。
論文 参考訳(メタデータ) (2023-12-04T16:44:53Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
我々は多電子シュル「オーディンガー方程式」の真正解を求めるアルゴリズムを提案する。
量子シミュレータと雑音量子コンピュータの両方でアルゴリズムを実証する。
論文 参考訳(メタデータ) (2023-03-01T19:00:00Z) - Quantum circuit matrix product state ansatz for large-scale simulations
of molecules [9.601481589619183]
比較的少数の量子ビットを持つ量子回路MPSの変動最適化により,分子系の基底状態エネルギーを計算することを提案する。
50の軌道を持つ線形分子のQCMPSシミュレーションは、中程度の回路深さでわずか6キュービットで化学精度に達することができる。
論文 参考訳(メタデータ) (2023-01-16T11:43:43Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
本研究では,Landau-Zenerモデルにおける過渡ダイナミクスを,Landau-Zener速度の関数として検討する。
我々の実験は、工学的なボソニックモードスペクトルに結合した量子ビットを用いたより複雑なシミュレーションの道を開いた。
論文 参考訳(メタデータ) (2022-11-26T15:04:11Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
変分アダバティックゲージ変換(VAGT)を導入する。
VAGTは、現在の量子コンピュータを用いてユニタリ回路の変動パラメータを学習できる非摂動型ハイブリッド量子アルゴリズムである。
VAGTの精度は、RigettiおよびIonQ量子コンピュータ上でのシミュレーションと同様に、トラフ数値シミュレーションで検証される。
論文 参考訳(メタデータ) (2021-11-16T20:50:08Z) - Coarse grained intermolecular interactions on quantum processors [0.0]
我々は、弱い相互作用する分子の基底状態を決定するのに理想的な電子応答の粗い粒度の表現を開発する。
本手法はIBM超伝導量子プロセッサ上で実証する。
我々は、現在の世代の量子ハードウェアは、弱い拘束力を持つが、それでも化学的にユビキタスで生物学的に重要な体制でエネルギーを探索することができると結論付けている。
論文 参考訳(メタデータ) (2021-10-03T09:56:47Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
現在の世代のノイズの多い中間スケール量子コンピュータ(NISQ)は、チップサイズとエラー率に大きく制限されている。
我々は、自由フェルミオンとして知られる特定のスピンハミルトニアンをシミュレーションするために、量子回路を効率よく圧縮するために局所化回路変換を導出する。
提案した数値回路圧縮アルゴリズムは、後方安定に動作し、$mathcalO(103)$スピンを超える回路合成を可能にするスピンの数で3次スケールする。
論文 参考訳(メタデータ) (2021-08-06T19:38:03Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQEは現在、短期量子コンピュータ上で電子構造問題を解決するためのフラッグシップアルゴリズムである。
本稿では、状態準備に使用される量子回路を完全に取り除き、量子制御ルーチンに置き換える代替アルゴリズムを提案する。
VQEと同様に、最適化された目的関数は、量子ビットマップされた分子ハミルトニアンの期待値である。
論文 参考訳(メタデータ) (2020-08-10T17:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。