論文の概要: Vision-and-Language Navigation via Causal Learning
- arxiv url: http://arxiv.org/abs/2404.10241v1
- Date: Tue, 16 Apr 2024 02:40:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 18:12:17.442532
- Title: Vision-and-Language Navigation via Causal Learning
- Title(参考訳): 因果学習による視覚・言語ナビゲーション
- Authors: Liuyi Wang, Zongtao He, Ronghao Dang, Mengjiao Shen, Chengju Liu, Qijun Chen,
- Abstract要約: クロスモーダル因果変換器(Cross-modal causal transformer, GOAT)は因果推論のパラダイムに根ざした先駆的な解である。
BACLおよびFACLモジュールは、潜在的刺激的相関を包括的に緩和することにより、偏見のない学習を促進する。
グローバルな共同創設者の特徴を捉えるために,コントラスト学習によって教師されるクロスモーダル機能プーリングモジュールを提案する。
- 参考スコア(独自算出の注目度): 13.221880074458227
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the pursuit of robust and generalizable environment perception and language understanding, the ubiquitous challenge of dataset bias continues to plague vision-and-language navigation (VLN) agents, hindering their performance in unseen environments. This paper introduces the generalized cross-modal causal transformer (GOAT), a pioneering solution rooted in the paradigm of causal inference. By delving into both observable and unobservable confounders within vision, language, and history, we propose the back-door and front-door adjustment causal learning (BACL and FACL) modules to promote unbiased learning by comprehensively mitigating potential spurious correlations. Additionally, to capture global confounder features, we propose a cross-modal feature pooling (CFP) module supervised by contrastive learning, which is also shown to be effective in improving cross-modal representations during pre-training. Extensive experiments across multiple VLN datasets (R2R, REVERIE, RxR, and SOON) underscore the superiority of our proposed method over previous state-of-the-art approaches. Code is available at https://github.com/CrystalSixone/VLN-GOAT.
- Abstract(参考訳): 堅牢で一般化可能な環境認識と言語理解の追求において、データセットバイアスのユビキタスな課題は、視覚・言語ナビゲーション(VLN)エージェントに悩まされ、目に見えない環境でのパフォーマンスを妨げ続けている。
本稿では、一般化されたクロスモーダル因果変換器(GOAT)を紹介し、因果推論のパラダイムに根ざした先駆的解である。
視覚,言語,歴史の両面において,観測不能かつ観測不能な共同創設者を掘り下げることにより,潜在的刺激的相関を包括的に緩和し,バイアスのない学習を促進するために,バックドアおよびフロントドア調整因果学習(BACL,FACL)モジュールを提案する。
さらに,グローバルな共同創設者の特徴を捉えるために,コントラスト学習によって教師されるクロスモーダル機能プーリング(CFP)モジュールを提案する。
複数のVLNデータセット(R2R、REVERIE、RxR、SOON)にわたる大規模な実験により、提案手法が従来の最先端手法よりも優れていることを示す。
コードはhttps://github.com/CrystalSixone/VLN-GOATで公開されている。
関連論文リスト
- Graph-based Unsupervised Disentangled Representation Learning via Multimodal Large Language Models [42.17166746027585]
複素データ内の因子化属性とその相互関係を学習するための双方向重み付きグラフベースフレームワークを提案する。
具体的には、グラフの初期ノードとして要素を抽出する$beta$-VAEベースのモジュールを提案する。
これらの相補的加群を統合することで、我々は細粒度、実用性、教師なしの絡み合いをうまく達成できる。
論文 参考訳(メタデータ) (2024-07-26T15:32:21Z) - TINA: Think, Interaction, and Action Framework for Zero-Shot Vision Language Navigation [11.591176410027224]
本稿では,Large Language Models(LLM)に基づく視覚言語ナビゲーション(VLN)エージェントを提案する。
環境認識におけるLLMの欠点を補うための思考・相互作用・行動の枠組みを提案する。
また,本手法は教師付き学習手法よりも優れ,ゼロショットナビゲーションの有効性を強調した。
論文 参考訳(メタデータ) (2024-03-13T05:22:39Z) - NavCoT: Boosting LLM-Based Vision-and-Language Navigation via Learning
Disentangled Reasoning [101.56342075720588]
Embodied AIの重要な研究課題であるVision-and-Language Navigation (VLN)は、自然言語の指示に従って複雑な3D環境をナビゲートするために、エンボディエージェントを必要とする。
近年の研究では、ナビゲーションの推論精度と解釈可能性を改善することにより、VLNにおける大きな言語モデル(LLM)の有望な能力を強調している。
本稿では,自己誘導型ナビゲーション決定を実現するために,パラメータ効率の高いドメイン内トレーニングを実現する,Navigational Chain-of-Thought (NavCoT) という新しい戦略を提案する。
論文 参考訳(メタデータ) (2024-03-12T07:27:02Z) - Causality-based Cross-Modal Representation Learning for
Vision-and-Language Navigation [15.058687283978077]
VLN(Vision-and-Language Navigation)は、現実のシナリオに応用される可能性から、近年、大きな研究の関心を集めている。
既存のVLN法は、急激な関連の問題に苦慮し、その結果、目に見える環境と目に見えない環境の間に大きな性能差があるような一般化が不十分になる。
本稿では,因果学習パラダイムに基づく統一的なフレームワークCausalVLNを提案する。
論文 参考訳(メタデータ) (2024-03-06T02:01:38Z) - Divert More Attention to Vision-Language Object Tracking [87.31882921111048]
大規模な視覚言語アノテートビデオと非効果的な視覚言語対話学習が欠如していることは、トラッキングのためのより効果的な視覚言語表現の設計を動機づけている、と我々は主張する。
本稿では,まず,6つの人気追跡ベンチマークで動画をデコレートする属性アノテーション戦略を提案する。
次に,非対称なアーキテクチャ探索とモダリティミキサー(ModaMixer)を提案する,統一適応型VL表現の学習によるトラッキング向上のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-19T15:22:06Z) - Anticipating the Unseen Discrepancy for Vision and Language Navigation [63.399180481818405]
視覚言語ナビゲーションでは、エージェントは特定のターゲットに到達するために自然言語命令に従う必要がある。
目に見える環境と目に見えない環境の間に大きな違いがあるため、エージェントがうまく一般化することは困難である。
本研究では,テストタイムの視覚的整合性を促進することによって,未知の環境への一般化を学習する,未知の離散性予測ビジョンと言語ナビゲーション(DAVIS)を提案する。
論文 参考訳(メタデータ) (2022-09-10T19:04:40Z) - Cross-Modal Causal Relational Reasoning for Event-Level Visual Question
Answering [134.91774666260338]
既存の視覚的質問応答法は、しばしばクロスモーダルなスプリアス相関と過度に単純化されたイベントレベルの推論プロセスに悩まされる。
本稿では,イベントレベルの視覚的質問応答の課題に対処するために,モーダルな因果関係推論のためのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-26T04:25:54Z) - Cross-modal Map Learning for Vision and Language Navigation [82.04247028482244]
VLN(Vision-and-Language Navigation)の問題点について考察する。
他の研究とは対照的に、我々の重要な洞察は、言語と視覚の関連性は、明示的な空間表現で起こるときに強くなるということである。
視覚・言語ナビゲーションのためのクロスモーダルマップ学習モデルを提案する。このモデルでは,まず,観測領域と観測対象領域の両方に対して,エゴセントリックマップ上のトップダウンセマンティクスを予測することを学習する。
論文 参考訳(メタデータ) (2022-03-10T03:30:12Z) - Contrastive Instruction-Trajectory Learning for Vision-Language
Navigation [66.16980504844233]
視覚言語ナビゲーション(VLN)タスクでは、エージェントが自然言語の指示でターゲットに到達する必要がある。
先行研究は、命令-軌道対間の類似点と相違点を識別できず、サブ命令の時間的連続性を無視する。
本稿では、類似したデータサンプル間の分散と、異なるデータサンプル間の分散を探索し、ロバストなナビゲーションのための独特な表現を学習するContrastive Instruction-Trajectory Learningフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-08T06:32:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。