論文の概要: Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy
- arxiv url: http://arxiv.org/abs/2404.10259v2
- Date: Mon, 15 Jul 2024 13:00:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 00:56:00.112398
- Title: Uncovering Latent Arguments in Social Media Messaging by Employing LLMs-in-the-Loop Strategy
- Title(参考訳): LLMs-in-the-Loop戦略によるソーシャルメディアメッセージングにおける潜在的論点の解明
- Authors: Tunazzina Islam, Dan Goldwasser,
- Abstract要約: ソーシャルメディアは世論分析の自動化方法として人気が高まっている。
トピックモデリングのような公共の話題からテーマを抽出する伝統的な教師なしの手法は、しばしば特定のニュアンスを捉えない過度なパターンを明らかにする。
本稿では,大規模言語モデルの高度な機能を活用したLLMs-in-the-Loop戦略を提案する。
- 参考スコア(独自算出の注目度): 22.976609127865732
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The widespread use of social media has led to a surge in popularity for automated methods of analyzing public opinion. Supervised methods are adept at text categorization, yet the dynamic nature of social media discussions poses a continual challenge for these techniques due to the constant shifting of the focus. On the other hand, traditional unsupervised methods for extracting themes from public discourse, such as topic modeling, often reveal overarching patterns that might not capture specific nuances. Consequently, a significant portion of research into social media discourse still depends on labor-intensive manual coding techniques and a human-in-the-loop approach, which are both time-consuming and costly. In this work, we study the problem of discovering arguments associated with a specific theme. We propose a generic LLMs-in-the-Loop strategy that leverages the advanced capabilities of Large Language Models (LLMs) to extract latent arguments from social media messaging. To demonstrate our approach, we apply our framework to contentious topics. We use two publicly available datasets: (1) the climate campaigns dataset of 14k Facebook ads with 25 themes and (2) the COVID-19 vaccine campaigns dataset of 9k Facebook ads with 14 themes. Additionally, we design a downstream task as stance prediction by leveraging talking points in climate debates. Furthermore, we analyze demographic targeting and the adaptation of messaging based on real-world events.
- Abstract(参考訳): ソーシャルメディアの普及により、世論分析の自動化手法として人気が高まっている。
改訂された手法はテキストの分類に適しているが、ソーシャルメディアの議論のダイナミックな性質は、焦点の連続的なシフトにより、これらの技術に継続的な挑戦をもたらす。
一方,トピックモデリングなどの話題からテーマを抽出する従来の教師なし手法では,特定のニュアンスを捉えないような過度なパターンがしばしば現れる。
その結果、ソーシャルメディアの談話研究のかなりの部分は、労働集約的な手作業によるコーディング技術と、時間と費用のかかる人道的なアプローチに依存している。
本研究では,特定のテーマに関連付けられた議論の発見問題について考察する。
本稿では,Large Language Models (LLM) の高度な機能を活用し,ソーシャルメディアのメッセージから潜在的議論を抽出する汎用 LLM-in-the-Loop 戦略を提案する。
このアプローチを実証するために、我々のフレームワークを議論の多いトピックに適用する。
1) テーマが25のFacebook広告14kの気候キャンペーンデータセットと,(2) テーマが14のFacebook広告9kの新型コロナウイルスワクチンキャンペーンデータセットである。
さらに,気候論争における発話点を活用した姿勢予測として,下流課題を設計する。
さらに、実世界の出来事に基づいて、人口統計ターゲティングとメッセージの適応を分析する。
関連論文リスト
- Discovering Latent Themes in Social Media Messaging: A Machine-in-the-Loop Approach Integrating LLMs [22.976609127865732]
ソーシャルメディアメッセージングにおける潜在テーマを明らかにするための新しいアプローチを提案する。
私たちの仕事は、ソーシャルメディアのダイナミックな性質に光を当て、現実の出来事に対するメッセージのテーマ的焦点の変化を明らかにします。
論文 参考訳(メタデータ) (2024-03-15T21:54:00Z) - Social Convos: Capturing Agendas and Emotions on Social Media [1.6385815610837167]
本稿では,特定のトピックを議論するユーザのグループ間を循環するメッセージから,影響指標を抽出する手法を提案する。
我々は、アジェンダ(制御)と感情言語の使用の2つの影響指標に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-23T19:14:09Z) - SoMeLVLM: A Large Vision Language Model for Social Media Processing [78.47310657638567]
ソーシャルメディア処理のための大規模ビジョン言語モデル(SoMeLVLM)を提案する。
SoMeLVLMは、知識と理解、応用、分析、評価、作成を含む5つの重要な機能を備えた認知フレームワークである。
実験により,複数のソーシャルメディアタスクにおいて,SoMeLVLMが最先端のパフォーマンスを達成できることが実証された。
論文 参考訳(メタデータ) (2024-02-20T14:02:45Z) - Modeling Political Orientation of Social Media Posts: An Extended
Analysis [0.0]
オンラインソーシャルメディア上で政治的分極を特徴付ける機械学習モデルを開発することは、大きな課題である。
これらの課題は主に、注釈付きデータの欠如、ソーシャルメディアデータセットにおけるノイズの存在、膨大な量のデータなど、さまざまな要因に起因している。
本稿では、ソーシャルメディア投稿のラベル付けに、メディアバイアスと投稿コンテンツを活用する2つの方法を紹介する。
ソーシャルメディア投稿の政治的指向を予測することで,現在の機械学習モデルの性能向上を実証する。
論文 参考訳(メタデータ) (2023-11-21T03:34:20Z) - Leveraging Large Language Models to Detect Influence Campaigns in Social
Media [9.58546889761175]
ソーシャルメディアの影響は、大衆の言論や民主主義に重大な課題をもたらしている。
従来の検出方法は、ソーシャルメディアの複雑さとダイナミックな性質のために不足している。
本稿では,ユーザメタデータとネットワーク構造の両方を組み込んだLarge Language Models (LLM) を用いた新しい検出手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T00:25:09Z) - Cross-Platform Social Dynamics: An Analysis of ChatGPT and COVID-19
Vaccine Conversations [37.69303106863453]
2022年のChatGPTのリリースと2021年の新型コロナウイルスワクチンに関する世界的な議論という、2つの重要な出来事に関する1200万件以上の投稿とニュース記事を分析した。
データはTwitter、Facebook、Instagram、Reddit、YouTube、GDELTなど、複数のプラットフォームから収集された。
トピックモデリング手法を用いて,各プラットフォーム上の異なる主題のエミュレーションを明らかにし,その特徴と対象のオーディエンスを反映した。
論文 参考訳(メタデータ) (2023-10-17T09:58:55Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - ManiTweet: A New Benchmark for Identifying Manipulation of News on Social Media [74.93847489218008]
ソーシャルメディア上でのニュースの操作を識別し,ソーシャルメディア投稿の操作を検出し,操作された情報や挿入された情報を特定することを目的とした,新しいタスクを提案する。
この課題を研究するために,データ収集スキーマを提案し,3.6K対のツイートとそれに対応する記事からなるManiTweetと呼ばれるデータセットをキュレートした。
我々の分析では、このタスクは非常に難しいことを示し、大きな言語モデル(LLM)は不満足なパフォーマンスをもたらす。
論文 参考訳(メタデータ) (2023-05-23T16:40:07Z) - Persuasion Strategies in Advertisements [68.70313043201882]
我々は,説得戦略の広範な語彙を導入し,説得戦略を付加した最初の広告画像コーパスを構築した。
次に,マルチモーダル学習による説得戦略予測のタスクを定式化する。
我々は、Fortune-500社の1600件の広告キャンペーンについて、現実世界でケーススタディを実施している。
論文 参考訳(メタデータ) (2022-08-20T07:33:13Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Dynamic Knowledge Routing Network For Target-Guided Open-Domain
Conversation [79.7781436501706]
本稿では,粗いキーワードを導入することで,システム応答の意図した内容を制御する構造的アプローチを提案する。
また,対話を円滑な目標達成に導くために,より高い成功率で対話を誘導する新たな二重談話レベルの目標誘導戦略を提案する。
論文 参考訳(メタデータ) (2020-02-04T09:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。