論文の概要: Trustworthy and Practical AI for Healthcare: A Guided Deferral System with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.07212v3
- Date: Wed, 26 Feb 2025 00:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:24:45.973709
- Title: Trustworthy and Practical AI for Healthcare: A Guided Deferral System with Large Language Models
- Title(参考訳): 医療のための信頼できる実践的なAI: 大規模言語モデルを用いたガイド付きデフレシステム
- Authors: Joshua Strong, Qianhui Men, Alison Noble,
- Abstract要約: 大規模言語モデル(LLM)は、医療における様々なアプリケーションに有用な技術を提供する。
彼らの幻覚化傾向と既存のプロプライエタリなシステムへの依存は、批判的な意思決定に関する環境に課題をもたらす。
本稿では,障害分類のための医療報告を同時に解析し,ヒトへの知的な指導による不確実な予測を推論する新しいHAICガイド型deferralシステムを提案する。
- 参考スコア(独自算出の注目度): 1.2281181385434294
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) offer a valuable technology for various applications in healthcare. However, their tendency to hallucinate and the existing reliance on proprietary systems pose challenges in environments concerning critical decision-making and strict data privacy regulations, such as healthcare, where the trust in such systems is paramount. Through combining the strengths and discounting the weaknesses of humans and AI, the field of Human-AI Collaboration (HAIC) presents one front for tackling these challenges and hence improving trust. This paper presents a novel HAIC guided deferral system that can simultaneously parse medical reports for disorder classification, and defer uncertain predictions with intelligent guidance to humans. We develop methodology which builds efficient, effective and open-source LLMs for this purpose, for the real-world deployment in healthcare. We conduct a pilot study which showcases the effectiveness of our proposed system in practice. Additionally, we highlight drawbacks of standard calibration metrics in imbalanced data scenarios commonly found in healthcare, and suggest a simple yet effective solution: the Imbalanced Expected Calibration Error.
- Abstract(参考訳): 大規模言語モデル(LLM)は、医療における様々なアプリケーションに有用な技術を提供する。
しかし、それらの幻覚化傾向と既存のプロプライエタリなシステムへの依存は、重要な意思決定や医療などの厳格なデータプライバシー規制に関する環境において、そのようなシステムへの信頼が最重要である。
人間とAIの弱点を和らげることによって、Human-AI Collaboration(HAIC)の分野は、これらの課題に対処し、信頼を向上する一面を提示している。
本稿では,障害分類のための医療報告を同時に解析し,ヒトへの知的な指導による不確実な予測を推論する新しいHAICガイド型deferralシステムを提案する。
我々は,この目的のために,医療における現実的な展開のために,効率的で効果的かつオープンソースなLCMを構築する手法を開発した。
提案システムの有効性を実証するパイロット実験を行った。
さらに、医療で一般的に見られる不均衡なデータシナリオにおける標準キャリブレーションメトリクスの欠点を強調し、シンプルだが効果的なソリューションとして、不均衡なキャリブレーションエラーを提案する。
関連論文リスト
- Fair Foundation Models for Medical Image Analysis: Challenges and Perspectives [2.5573554033525636]
自己教師付き学習を通じて膨大なデータセットに基づいてトレーニングされたファンデーションモデル(FM)は、医療画像タスクにまたがる効率的な適応を可能にする。
これらのモデルは公正性を高める可能性を示しているが、人口統計学的グループ間で一貫したパフォーマンスを達成する上で大きな課題は残る。
この包括的な枠組みは、体系的なバイアス緩和と政策関与を組み合わせることで、医療におけるAIの同等性に対する技術的障壁と制度的障壁の両方に効果的に対処できることを示すことで、現在の知識を前進させる。
論文 参考訳(メタデータ) (2025-02-24T04:54:49Z) - Artificial Intelligence-Driven Clinical Decision Support Systems [5.010570270212569]
この章は、医療で信頼できるAIシステムを作るには、公平さ、説明可能性、プライバシーを慎重に考慮する必要があることを強調している。
AIによる公平な医療提供を保証するという課題は強調され、臨床予測モデルのバイアスを特定し緩和する方法が議論されている。
この議論は、ディープラーニングモデルのデータ漏洩からモデル説明に対する高度な攻撃に至るまで、医療AIシステムのプライバシ脆弱性の分析に進展している。
論文 参考訳(メタデータ) (2025-01-16T16:17:39Z) - IntelliCare: Improving Healthcare Analysis with Variance-Controlled Patient-Level Knowledge from Large Language Models [14.709233593021281]
LLM(Large Language Models)からの外部知識の統合は、医療予測を改善するための有望な道を示す。
我々は,LLMを活用して高品質な患者レベルの外部知識を提供する新しいフレームワークであるIntelliCareを提案する。
IntelliCareは患者のコホートを特定し、LCMの理解と生成を促進するためにタスク関連統計情報を利用する。
論文 参考訳(メタデータ) (2024-08-23T13:56:00Z) - Speaking the Same Language: Leveraging LLMs in Standardizing Clinical Data for AI [0.0]
本研究は、医療データの標準化など、特定の課題に対処するため、大規模言語モデルの採用を念頭においている。
この結果から,大規模言語モデルを用いることで手作業によるデータキュレーションの必要性が著しく低下することが示唆された。
提案手法は、医療におけるAIの統合を迅速化し、患者のケアの質を向上させるとともに、AIのためのデータ作成に必要な時間と資金を最小化する。
論文 参考訳(メタデータ) (2024-08-16T20:51:21Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - From Uncertainty to Trust: Kernel Dropout for AI-Powered Medical Predictions [14.672477787408887]
信頼に値する信頼を持ったAI駆動型医療予測は、医療アプリケーションにおけるAIの責任ある使用を保証するために不可欠である。
本稿では,これらの課題に対処する新しいアプローチを提案し,カーネルモデルを用いたベイジアンモンテカルロ・ドロップアウトモデルを提案する。
限られたデータであっても、信頼性が大幅に向上し、AI駆動型医療予測の信頼構築に向けた有望なステップを提供します。
論文 参考訳(メタデータ) (2024-04-16T11:43:26Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Health-LLM: Personalized Retrieval-Augmented Disease Prediction System [43.91623010448573]
本稿では,大規模特徴抽出と医療知識トレードオフスコアリングを組み合わせた,革新的なフレームワークHeath-LLMを提案する。
従来の健康管理アプリケーションと比較して,本システムには3つの利点がある。
論文 参考訳(メタデータ) (2024-02-01T16:40:32Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
本研究では,Large Language Models (LLMs) のエッセイ自動評価における有効性について検討した。
本稿では,デュアルプロセス理論にインスパイアされたオープンソースのLLMベースのAESシステムを提案する。
本システムでは, 学習過程の自動化だけでなく, 成績や効率の向上も図っている。
論文 参考訳(メタデータ) (2024-01-12T07:50:10Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
本研究は, LLMを書き込みに最も有効に活用する方法と, これらのモデルとのインタラクションが, 書き込みプロセスにおけるオーナシップや信頼感にどのように影響するかを考察する。
LLMだけで十分なニュースの見出しを生成することができるが、平均すると、望ましくないモデルのアウトプットを修正するには人間による制御が必要である。
論文 参考訳(メタデータ) (2023-10-16T15:11:01Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z) - Improving Fairness in AI Models on Electronic Health Records: The Case
for Federated Learning Methods [0.0]
我々は、医療機関が連合学習パラダイムを通じて協力することで、バイアスの懸念を軽減する1つの可能なアプローチを示す。
本稿では,様々な公正度尺度に適合する,対向的偏りを伴う包括的FL手法とフェアアグリゲーション手法を提案する。
本手法は, 判定性能(精度)に最低限の影響を伴って, 有望な公平性を達成している。
論文 参考訳(メタデータ) (2023-05-19T02:03:49Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
機械学習は医療の改善に大いに貢献するが、その利用が健康格差を広めたり増幅したりしないことを確実にすることは重要である。
アルゴリズムの不公平性の潜在的な要因の1つ、ショートカット学習は、トレーニングデータにおける不適切な相関に基づいてMLモデルが予測した時に発生する。
マルチタスク学習を用いて,臨床MLシステムの公平性評価の一環として,ショートカット学習の評価と緩和を行う手法を提案する。
論文 参考訳(メタデータ) (2022-07-21T09:35:38Z) - Privacy-preserving medical image analysis [53.4844489668116]
医用画像におけるプライバシ保護機械学習(PPML)のためのソフトウェアフレームワークであるPriMIAを提案する。
集合型学習モデルの分類性能は,未発見データセットの人間専門家と比較して有意に良好である。
グラデーションベースのモデル反転攻撃に対するフレームワークのセキュリティを実証的に評価する。
論文 参考訳(メタデータ) (2020-12-10T13:56:00Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - COVI White Paper [67.04578448931741]
接触追跡は、新型コロナウイルスのパンデミックの進行を変える上で不可欠なツールだ。
カナダで開発されたCovid-19の公衆ピアツーピア接触追跡とリスク認識モバイルアプリケーションであるCOVIの理論的、設計、倫理的考察、プライバシ戦略について概説する。
論文 参考訳(メタデータ) (2020-05-18T07:40:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。