論文の概要: Trustworthy and Practical AI for Healthcare: A Guided Deferral System with Large Language Models
- arxiv url: http://arxiv.org/abs/2406.07212v3
- Date: Wed, 26 Feb 2025 00:49:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:54:23.906026
- Title: Trustworthy and Practical AI for Healthcare: A Guided Deferral System with Large Language Models
- Title(参考訳): 医療のための信頼できる実践的なAI: 大規模言語モデルを用いたガイド付きデフレシステム
- Authors: Joshua Strong, Qianhui Men, Alison Noble,
- Abstract要約: 大規模言語モデル(LLM)は、医療における様々なアプリケーションに有用な技術を提供する。
彼らの幻覚化傾向と既存のプロプライエタリなシステムへの依存は、批判的な意思決定に関する環境に課題をもたらす。
本稿では,障害分類のための医療報告を同時に解析し,ヒトへの知的な指導による不確実な予測を推論する新しいHAICガイド型deferralシステムを提案する。
- 参考スコア(独自算出の注目度): 1.2281181385434294
- License:
- Abstract: Large language models (LLMs) offer a valuable technology for various applications in healthcare. However, their tendency to hallucinate and the existing reliance on proprietary systems pose challenges in environments concerning critical decision-making and strict data privacy regulations, such as healthcare, where the trust in such systems is paramount. Through combining the strengths and discounting the weaknesses of humans and AI, the field of Human-AI Collaboration (HAIC) presents one front for tackling these challenges and hence improving trust. This paper presents a novel HAIC guided deferral system that can simultaneously parse medical reports for disorder classification, and defer uncertain predictions with intelligent guidance to humans. We develop methodology which builds efficient, effective and open-source LLMs for this purpose, for the real-world deployment in healthcare. We conduct a pilot study which showcases the effectiveness of our proposed system in practice. Additionally, we highlight drawbacks of standard calibration metrics in imbalanced data scenarios commonly found in healthcare, and suggest a simple yet effective solution: the Imbalanced Expected Calibration Error.
- Abstract(参考訳): 大規模言語モデル(LLM)は、医療における様々なアプリケーションに有用な技術を提供する。
しかし、それらの幻覚化傾向と既存のプロプライエタリなシステムへの依存は、重要な意思決定や医療などの厳格なデータプライバシー規制に関する環境において、そのようなシステムへの信頼が最重要である。
人間とAIの弱点を和らげることによって、Human-AI Collaboration(HAIC)の分野は、これらの課題に対処し、信頼を向上する一面を提示している。
本稿では,障害分類のための医療報告を同時に解析し,ヒトへの知的な指導による不確実な予測を推論する新しいHAICガイド型deferralシステムを提案する。
我々は,この目的のために,医療における現実的な展開のために,効率的で効果的かつオープンソースなLCMを構築する手法を開発した。
提案システムの有効性を実証するパイロット実験を行った。
さらに、医療で一般的に見られる不均衡なデータシナリオにおける標準キャリブレーションメトリクスの欠点を強調し、シンプルだが効果的なソリューションとして、不均衡なキャリブレーションエラーを提案する。
関連論文リスト
- Safety challenges of AI in medicine in the era of large language models [23.817939398729955]
大規模言語モデル(LLM)は、医療従事者、患者、研究者に新たな機会を提供する。
AIとLLMはより強力になり、いくつかの医療タスクにおいて超人的パフォーマンスを達成するにつれ、その安全性に対する公衆の懸念が高まっている。
本稿では,LLM時代のAI利用の新たなリスクについて検討する。
論文 参考訳(メタデータ) (2024-09-11T13:47:47Z) - Speaking the Same Language: Leveraging LLMs in Standardizing Clinical Data for AI [0.0]
本研究は、医療データの標準化など、特定の課題に対処するため、大規模言語モデルの採用を念頭においている。
この結果から,大規模言語モデルを用いることで手作業によるデータキュレーションの必要性が著しく低下することが示唆された。
提案手法は、医療におけるAIの統合を迅速化し、患者のケアの質を向上させるとともに、AIのためのデータ作成に必要な時間と資金を最小化する。
論文 参考訳(メタデータ) (2024-08-16T20:51:21Z) - Predicting and Understanding Human Action Decisions: Insights from Large Language Models and Cognitive Instance-Based Learning [0.0]
大きな言語モデル(LLM)は、様々なタスクにまたがってその能力を実証している。
本稿では,LLMの推論と生成能力を利用して,2つの逐次意思決定タスクにおける人間の行動を予測する。
我々は,LLMの性能を,人間の経験的意思決定を模倣した認知的インスタンスベース学習モデルと比較した。
論文 参考訳(メタデータ) (2024-07-12T14:13:06Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Human-AI Collaborative Essay Scoring: A Dual-Process Framework with LLMs [13.262711792955377]
本研究では,Large Language Models (LLMs) のエッセイ自動評価における有効性について検討した。
本稿では,デュアルプロセス理論にインスパイアされたオープンソースのLLMベースのAESシステムを提案する。
本システムでは, 学習過程の自動化だけでなく, 成績や効率の向上も図っている。
論文 参考訳(メタデータ) (2024-01-12T07:50:10Z) - DIALIGHT: Lightweight Multilingual Development and Evaluation of
Task-Oriented Dialogue Systems with Large Language Models [76.79929883963275]
DIALIGHTは多言語タスク指向対話(ToD)システムの開発と評価のためのツールキットである。
ローカル発話レベルとグローバル対話レベルの両方において、人間のきめ細かい評価のためのセキュアでユーザフレンドリーなWebインターフェースを備えている。
評価の結果, PLMの微調整により精度とコヒーレンスが向上する一方, LLMベースのシステムは多様で類似した応答を生成するのに優れていた。
論文 参考訳(メタデータ) (2024-01-04T11:27:48Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - Harnessing the Power of LLMs: Evaluating Human-AI Text Co-Creation
through the Lens of News Headline Generation [58.31430028519306]
本研究は, LLMを書き込みに最も有効に活用する方法と, これらのモデルとのインタラクションが, 書き込みプロセスにおけるオーナシップや信頼感にどのように影響するかを考察する。
LLMだけで十分なニュースの見出しを生成することができるが、平均すると、望ましくないモデルのアウトプットを修正するには人間による制御が必要である。
論文 参考訳(メタデータ) (2023-10-16T15:11:01Z) - Redefining Digital Health Interfaces with Large Language Models [69.02059202720073]
大規模言語モデル(LLM)は、複雑な情報を処理できる汎用モデルとして登場した。
LLMが臨床医とデジタル技術との新たなインターフェースを提供する方法を示す。
自動機械学習を用いた新しい予後ツールを開発した。
論文 参考訳(メタデータ) (2023-10-05T14:18:40Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
患者-心電図マッチング(LLM-PTM)のための革新的なプライバシ対応データ拡張手法を提案する。
本実験では, LLM-PTM法を用いて平均性能を7.32%向上させ, 新しいデータへの一般化性を12.12%向上させた。
論文 参考訳(メタデータ) (2023-03-24T03:14:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。