LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System
- URL: http://arxiv.org/abs/2404.10498v1
- Date: Tue, 16 Apr 2024 12:12:06 GMT
- Title: LAECIPS: Large Vision Model Assisted Adaptive Edge-Cloud Collaboration for IoT-based Perception System
- Authors: Shijing Hu, Ruijun Deng, Xin Du, Zhihui Lu, Qiang Duan, Yi He, Shih-Chia Huang, Jie Wu,
- Abstract summary: Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency.
Existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments.
In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency.
- Score: 24.84622024011103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent large vision models (e.g., SAM) enjoy great potential to facilitate intelligent perception with high accuracy. Yet, the resource constraints in the IoT environment tend to limit such large vision models to be locally deployed, incurring considerable inference latency thereby making it difficult to support real-time applications, such as autonomous driving and robotics. Edge-cloud collaboration with large-small model co-inference offers a promising approach to achieving high inference accuracy and low latency. However, existing edge-cloud collaboration methods are tightly coupled with the model architecture and cannot adapt to the dynamic data drifts in heterogeneous IoT environments. To address the issues, we propose LAECIPS, a new edge-cloud collaboration framework. In LAECIPS, both the large vision model on the cloud and the lightweight model on the edge are plug-and-play. We design an edge-cloud collaboration strategy based on hard input mining, optimized for both high accuracy and low latency. We propose to update the edge model and its collaboration strategy with the cloud under the supervision of the large vision model, so as to adapt to the dynamic IoT data streams. Theoretical analysis of LAECIPS proves its feasibility. Experiments conducted in a robotic semantic segmentation system using real-world datasets show that LAECIPS outperforms its state-of-the-art competitors in accuracy, latency, and communication overhead while having better adaptability to dynamic environments.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - MambaLoc: Efficient Camera Localisation via State Space Model [42.85368902409545]
Location information is pivotal for the automation and intelligence of terminal devices and edge-cloud IoT systems, such as autonomous vehicles and augmented reality.
achieving reliable positioning across diverse IoT applications remains challenging due to significant training costs and the necessity of densely collected data.
We have innovatively applied the selective state space (SSM) model to visual localization, introducing a new model named MambaLoc.
arXiv Detail & Related papers (2024-08-19T03:38:29Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
This work empirically investigates the optimization of complex deep learning models to analyze their functionality on an embedded device.
It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection.
arXiv Detail & Related papers (2024-06-25T17:34:52Z) - Towards Robust and Efficient Cloud-Edge Elastic Model Adaptation via Selective Entropy Distillation [56.79064699832383]
We establish a Cloud-Edge Elastic Model Adaptation (CEMA) paradigm in which the edge models only need to perform forward propagation.
In our CEMA, to reduce the communication burden, we devise two criteria to exclude unnecessary samples from uploading to the cloud.
arXiv Detail & Related papers (2024-02-27T08:47:19Z) - ECLM: Efficient Edge-Cloud Collaborative Learning with Continuous
Environment Adaptation [47.35179593006409]
We propose ECLM, an edge-cloud collaborative learning framework for rapid model adaptation for dynamic edge environments.
We show that ECLM significantly improves model performance (e.g., 18.89% accuracy increase) and resource efficiency (e.g. 7.12x communication cost reduction) in adapting models to dynamic edge environments.
arXiv Detail & Related papers (2023-11-18T14:10:09Z) - Streaming Video Analytics On The Edge With Asynchronous Cloud Support [2.7456483236562437]
We propose a novel edge-cloud fusion algorithm that fuses edge and cloud predictions, achieving low latency and high accuracy.
We focus on object detection in videos (applicable in many video analytics scenarios) and show that the fused edge-cloud predictions can outperform the accuracy of edge-only and cloud-only scenarios by as much as 50%.
arXiv Detail & Related papers (2022-10-04T06:22:13Z) - Auto-Split: A General Framework of Collaborative Edge-Cloud AI [49.750972428032355]
This paper describes the techniques and engineering practice behind Auto-Split, an edge-cloud collaborative prototype of Huawei Cloud.
To the best of our knowledge, there is no existing industry product that provides the capability of Deep Neural Network (DNN) splitting.
arXiv Detail & Related papers (2021-08-30T08:03:29Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Learning to Continuously Optimize Wireless Resource In Episodically
Dynamic Environment [55.91291559442884]
This work develops a methodology that enables data-driven methods to continuously learn and optimize in a dynamic environment.
We propose to build the notion of continual learning into the modeling process of learning wireless systems.
Our design is based on a novel min-max formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2020-11-16T08:24:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.